These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 19534553)

  • 1. An extensive survey of tyrosine phosphorylation revealing new sites in human mammary epithelial cells.
    Heibeck TH; Ding SJ; Opresko LK; Zhao R; Schepmoes AA; Yang F; Tolmachev AV; Monroe ME; Camp DG; Smith RD; Wiley HS; Qian WJ
    J Proteome Res; 2009 Aug; 8(8):3852-61. PubMed ID: 19534553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust co-regulation of tyrosine phosphorylation sites on proteins reveals novel protein interactions.
    Naegle KM; White FM; Lauffenburger DA; Yaffe MB
    Mol Biosyst; 2012 Oct; 8(10):2771-82. PubMed ID: 22851037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time-resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor receptor signaling network reveals dynamic modules.
    Zhang Y; Wolf-Yadlin A; Ross PL; Pappin DJ; Rush J; Lauffenburger DA; White FM
    Mol Cell Proteomics; 2005 Sep; 4(9):1240-50. PubMed ID: 15951569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling HER2 effects on cell behavior from mass spectrometry phosphotyrosine data.
    Kumar N; Wolf-Yadlin A; White FM; Lauffenburger DA
    PLoS Comput Biol; 2007 Jan; 3(1):e4. PubMed ID: 17206861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks.
    Wolf-Yadlin A; Hautaniemi S; Lauffenburger DA; White FM
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5860-5. PubMed ID: 17389395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling.
    Boersema PJ; Foong LY; Ding VM; Lemeer S; van Breukelen B; Philp R; Boekhorst J; Snel B; den Hertog J; Choo AB; Heck AJ
    Mol Cell Proteomics; 2010 Jan; 9(1):84-99. PubMed ID: 19770167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tandem Mass Tag Approach Utilizing Pervanadate BOOST Channels Delivers Deeper Quantitative Characterization of the Tyrosine Phosphoproteome.
    Chua XY; Mensah T; Aballo T; Mackintosh SG; Edmondson RD; Salomon AR
    Mol Cell Proteomics; 2020 Apr; 19(4):730-743. PubMed ID: 32071147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of protein tyrosine phosphorylation by nanoelectrospray ionization high-resolution tandem mass spectrometry and tyrosine-targeted product ion scanning.
    Salek M; Alonso A; Pipkorn R; Lehmann WD
    Anal Chem; 2003 Jun; 75(11):2724-9. PubMed ID: 12948142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic analysis of the epidermal growth factor receptor by mass spectrometry reveals stimulation-dependent multisite phosphorylation.
    Boeri Erba E; Bergatto E; Cabodi S; Silengo L; Tarone G; Defilippi P; Jensen ON
    Mol Cell Proteomics; 2005 Aug; 4(8):1107-21. PubMed ID: 15901825
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative phospho-proteomic profiling of hepatocyte growth factor (HGF)-MET signaling in colorectal cancer.
    Organ SL; Tong J; Taylor P; St-Germain JR; Navab R; Moran MF; Tsao MS
    J Proteome Res; 2011 Jul; 10(7):3200-11. PubMed ID: 21609022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive phosphoproteome analysis of INS-1 pancreatic β-cells using various digestion strategies coupled with liquid chromatography-tandem mass spectrometry.
    Han D; Moon S; Kim Y; Ho WK; Kim K; Kang Y; Jun H; Kim Y
    J Proteome Res; 2012 Apr; 11(4):2206-23. PubMed ID: 22276854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoproteomics Analysis Identifies Novel Candidate Substrates of the Nonreceptor Tyrosine Kinase,
    Goel RK; Paczkowska M; Reimand J; Napper S; Lukong KE
    Mol Cell Proteomics; 2018 May; 17(5):925-947. PubMed ID: 29496907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Purification and identification of tyrosine-phosphorylated proteins from B lymphocytes stimulated through the antigen receptor.
    Gold MR; Yungwirth T; Sutherland CL; Ingham RJ; Vianzon D; Chiu R; van Oostveen I; Morrison HD; Aebersold R
    Electrophoresis; 1994; 15(3-4):441-53. PubMed ID: 7519980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved proteome coverage by using high efficiency cysteinyl peptide enrichment: the human mammary epithelial cell proteome.
    Liu T; Qian WJ; Chen WN; Jacobs JM; Moore RJ; Anderson DJ; Gritsenko MA; Monroe ME; Thrall BD; Camp DG; Smith RD
    Proteomics; 2005 Apr; 5(5):1263-73. PubMed ID: 15742320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Profiling the tyrosine phosphoproteome of different mouse mammary tumour models reveals distinct, model-specific signalling networks and conserved oncogenic pathways.
    Ali NA; Wu J; Hochgräfe F; Chan H; Nair R; Ye S; Zhang L; Lyons RJ; Pinese M; Lee HC; Armstrong N; Ormandy CJ; Clark SJ; Swarbrick A; Daly RJ
    Breast Cancer Res; 2014 Sep; 16(5):437. PubMed ID: 25200860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of immunoaffinity enrichment and detection: toward a comprehensive characterization of the phosphotyrosine proteome of K562 cells by liquid chromatography-mass spectrometry.
    Artemenko KA; Bergström Lind S; Elfineh L; Mayrhofer C; Zubarev RA; Bergquist J; Pettersson U
    Analyst; 2011 May; 136(9):1971-8. PubMed ID: 21403953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mammary epithelial cell secretome and its regulation by signal transduction pathways.
    Jacobs JM; Waters KM; Kathmann LE; Camp DG; Wiley HS; Smith RD; Thrall BD
    J Proteome Res; 2008 Feb; 7(2):558-69. PubMed ID: 18166007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphoproteomics identified Endofin, DCBLD2, and KIAA0582 as novel tyrosine phosphorylation targets of EGF signaling and Iressa in human cancer cells.
    Chen Y; Low TY; Choong LY; Ray RS; Tan YL; Toy W; Lin Q; Ang BK; Wong CH; Lim S; Li B; Hew CL; Sze NS; Druker BJ; Lim YP
    Proteomics; 2007 Jul; 7(14):2384-97. PubMed ID: 17570516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-Step SH2 Superbinder-Based Approach for Sensitive Analysis of Tyrosine Phosphoproteome.
    Yao Y; Wang Y; Wang S; Liu X; Liu Z; Li Y; Fang Z; Mao J; Zheng Y; Ye M
    J Proteome Res; 2019 Apr; 18(4):1870-1879. PubMed ID: 30875230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphotyrosine signaling networks in epidermal growth factor receptor overexpressing squamous carcinoma cells.
    Thelemann A; Petti F; Griffin G; Iwata K; Hunt T; Settinari T; Fenyo D; Gibson N; Haley JD
    Mol Cell Proteomics; 2005 Apr; 4(4):356-76. PubMed ID: 15657067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.