These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 19534558)

  • 21. Changes in single-walled carbon nanotube chirality during growth and regrowth.
    Zhu W; Rosén A; Bolton K
    J Chem Phys; 2008 Mar; 128(12):124708. PubMed ID: 18376961
    [TBL] [Abstract][Full Text] [Related]  

  • 22. C-BN single-walled nanotubes from hybrid connection of BN/C nanoribbons: prediction by ab initio density functional calculations.
    Du A; Chen Y; Zhu Z; Lu G; Smith SC
    J Am Chem Soc; 2009 Feb; 131(5):1682-3. PubMed ID: 19152268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling the structure-property relationships of nanoneedles: A journey toward nanomedicine.
    Poater A; Saliner AG; Carbó-Dorca R; Poater J; Solà M; Cavallo L; Worth AP
    J Comput Chem; 2009 Jan; 30(2):275-84. PubMed ID: 18615420
    [TBL] [Abstract][Full Text] [Related]  

  • 24. First principle investigation of transport properties of Lindqvist derivatives based molecular junction.
    Wen S; Guan W; Su Z; Yan L; Sanvito S
    J Mol Graph Model; 2012 Sep; 38():220-5. PubMed ID: 23079647
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Field-dependent electron emission patterns from individual SWCNTs simulated with a multi-scale algorithm.
    Wang W; Xu N; Li Z
    Ultramicroscopy; 2009 Sep; 109(10):1295-8. PubMed ID: 19540048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Revisiting the laser dye Styryl-13 as a reference near-infrared fluorophore: implications for the photoluminescence quantum yields of semiconducting single-walled carbon nanotubes.
    Stürzl N; Lebedkin S; Kappes MM
    J Phys Chem A; 2009 Sep; 113(38):10238-40. PubMed ID: 19757846
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electric field-induced translocation of single-stranded DNA through a polarized carbon nanotube membrane.
    Xie Y; Kong Y; Soh AK; Gao H
    J Chem Phys; 2007 Dec; 127(22):225101. PubMed ID: 18081421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Field emission from a selected multiwall carbon nanotube.
    Passacantando M; Bussolotti F; Santucci S; Di Bartolomeo A; Giubileo F; Iemmo L; Cucolo AM
    Nanotechnology; 2008 Oct; 19(39):395701. PubMed ID: 21832602
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cryogenic separation of hydrogen isotopes in single-walled carbon and boron-nitride nanotubes: insight into the mechanism of equilibrium quantum sieving in quasi-one-dimensional pores.
    Kowalczyk P; Gauden PA; Terzyk AP
    J Phys Chem B; 2008 Jul; 112(28):8275-84. PubMed ID: 18570395
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An electrochemical sensor for 3,4-dihydroxyphenylacetic acid with carbon nanotubes as electronic transducer and synthetic cyclophane as recognition element.
    Yan J; Zhou Y; Yu P; Su L; Mao L; Zhang D; Zhu D
    Chem Commun (Camb); 2008 Sep; (36):4330-2. PubMed ID: 18802560
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electron transport characteristics of one-dimensional heterojunctions with multi-nitrogen-doped capped carbon nanotubes.
    Lee SU; Mizuseki H; Kawazoe Y
    Nanoscale; 2010 Dec; 2(12):2758-64. PubMed ID: 20877895
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multiscale modeling catalytic decomposition of hydrocarbons during carbon nanotube growth.
    Vasenkov AV; Sengupta D; Frenklach M
    J Phys Chem B; 2009 Feb; 113(7):1877-82. PubMed ID: 19173570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The influence of the carbon nanotube on the structural and dynamical properties of cholesterol cluster.
    Raczyński P; Dawid A; Sokół M; Gburski Z
    Biomol Eng; 2007 Nov; 24(5):572-6. PubMed ID: 17977066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transport properties of graphene nanoribbon-based molecular devices.
    Ding Z; Jiang J; Xing H; Shu H; Dong R; Chen X; Lu W
    J Comput Chem; 2011 Mar; 32(4):737-41. PubMed ID: 20925088
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designing nanogadgetry for nanoelectronic devices with nitrogen-doped capped carbon nanotubes.
    Lee SU; Belosludov RV; Mizuseki H; Kawazoe Y
    Small; 2009 Aug; 5(15):1769-75. PubMed ID: 19360721
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemically linked AuNP-alkane network for enhanced photoemission and field emission.
    Xie XN; Gao X; Qi D; Xie Y; Shen L; Yang SW; Sow CH; Wee AT
    ACS Nano; 2009 Sep; 3(9):2722-30. PubMed ID: 19769404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Raman spectroscopy study and first-principles calculations of the interaction between nucleic acid bases and carbon nanotubes.
    Stepanian SG; Karachevtsev MV; Glamazda AY; Karachevtsev VA; Adamowicz L
    J Phys Chem A; 2009 Apr; 113(15):3621-9. PubMed ID: 19320448
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electronic properties and reactivity of Pt-doped carbon nanotubes.
    Tian WQ; Liu LV; Wang YA
    Phys Chem Chem Phys; 2006 Aug; 8(30):3528-39. PubMed ID: 16871342
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Symmetry in electron diffractions from helical structures.
    Zhang J; Zhu J
    Ultramicroscopy; 2008 Aug; 108(9):832-6. PubMed ID: 18395984
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increasing efficiency of photoelectronic conversion by encapsulation of photosynthetic reaction center proteins in arrayed carbon nanotube electrode.
    Lebedev N; Trammell SA; Tsoi S; Spano A; Kim JH; Xu J; Twigg ME; Schnur JM
    Langmuir; 2008 Aug; 24(16):8871-6. PubMed ID: 18616302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.