BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 19534725)

  • 1. The steady-state mechanism of cytochrome c oxidase: redox interactions between metal centres.
    Mason MG; Nicholls P; Cooper CE
    Biochem J; 2009 Aug; 422(2):237-46. PubMed ID: 19534725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady state redox levels in cytochrome oxidase: relevance for in vivo near infrared spectroscopy (NIRS).
    Cooper CE; Sharpe MA; Mason MG; Nicholls P
    Adv Exp Med Biol; 2009; 645():123-8. PubMed ID: 19227460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The assignment of the 655 nm spectral band of cytochrome oxidase.
    Mitchell R; Mitchell P; Rich PR
    FEBS Lett; 1991 Mar; 280(2):321-4. PubMed ID: 1849487
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single electron reduction of cytochrome c oxidase compound F: resolution of partial steps by transient spectroscopy.
    Zaslavsky D; Sadoski RC; Wang K; Durham B; Gennis RB; Millett F
    Biochemistry; 1998 Oct; 37(42):14910-6. PubMed ID: 9778367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nitric oxide ejects electrons from the binuclear centre of cytochrome c oxidase by reacting with oxidised copper: a general mechanism for the interaction of copper proteins with nitric oxide?
    Cooper CE; Torres J; Sharpe MA; Wilson MT
    FEBS Lett; 1997 Sep; 414(2):281-4. PubMed ID: 9315702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-spin ferric forms of cytochrome a3 in mixed-ligand and partially reduced cyanide-bound derivatives of cytochrome c oxidase.
    Hill BC; Brittain T; Eglinton DG; Gadsby PM; Greenwood C; Nicholls P; Peterson J; Thomson AJ; Woon TC
    Biochem J; 1983 Oct; 215(1):57-66. PubMed ID: 6312973
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation by reduction of the resting form of cytochrome c oxidase: tests of different models and evidence for the involvement of CuB.
    Wrigglesworth JM; Elsden J; Chapman A; Van der Water N; Grahn MF
    Biochim Biophys Acta; 1988 Dec; 936(3):452-64. PubMed ID: 2848581
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of a novel transient ferryl complex with reduced CuB in cytochrome c oxidase.
    Zaslavsky D; Smirnova IA; Adelroth P; Brzezinski P; Gennis RB
    Biochemistry; 1999 Feb; 38(8):2307-11. PubMed ID: 10029523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FTIR detection of protonation/deprotonation of key carboxyl side chains caused by redox change of the Cu(A)-heme a moiety and ligand dissociation from the heme a3-Cu(B) center of bovine heart cytochrome c oxidase.
    Okuno D; Iwase T; Shinzawa-Itoh K; Yoshikawa S; Kitagawa T
    J Am Chem Soc; 2003 Jun; 125(24):7209-18. PubMed ID: 12797794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IR signatures of the metal centres of bovine cytochrome c oxidase: assignments and redox-linkage.
    Dodia R; Maréchal A; Bettini S; Iwaki M; Rich PR
    Biochem Soc Trans; 2013 Oct; 41(5):1242-8. PubMed ID: 24059514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state redox behavior of cytochrome c, cytochrome a, and CuA of cytochrome c oxidase in intact rat liver mitochondria.
    Morgan JE; Wikström M
    Biochemistry; 1991 Jan; 30(4):948-58. PubMed ID: 1846562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of pH on redox titrations of haem a in cyanide-liganded cytochrome-c oxidase: experimental and modelling studies.
    Moody AJ; Rich PR
    Biochim Biophys Acta; 1990 Feb; 1015(2):205-15. PubMed ID: 2153404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Slow ('resting') forms of mitochondrial cytochrome c oxidase consist of two kinetically distinct conformations of the binuclear CuB/a3 centre--relevance to the mechanism of proton translocation.
    Cooper CE; Jünemann S; Ioannidis N; Wrigglesworth JM
    Biochim Biophys Acta; 1993 Sep; 1144(2):149-60. PubMed ID: 8396442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural models of the redox centres in cytochrome oxidase.
    Holm L; Saraste M; Wikström M
    EMBO J; 1987 Sep; 6(9):2819-23. PubMed ID: 2824194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic studies on the reaction between cytochrome c oxidase and ferrocytochrome c.
    Wilson MT; Greenwood C; Brunori M; Antonini E
    Biochem J; 1975 Apr; 147(1):145-53. PubMed ID: 168879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of overall oxidation state on infrared spectra of heme a3 cyanide in bovine heart cytochrome c oxidase. Evidence of novel mechanistic roles for CuB.
    Yoshikawa S; Mochizuki M; Zhao XJ; Caughey WS
    J Biol Chem; 1995 Mar; 270(9):4270-9. PubMed ID: 7876186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spectral and cyanide binding properties of the cytochrome aa3 (600 nm) complex from Bacillus subtilis.
    Hill BC; Peterson J
    Arch Biochem Biophys; 1998 Feb; 350(2):273-82. PubMed ID: 9473302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new ruthenium complex to study single-electron reduction of the pulsed O(H) state of detergent-solubilized cytochrome oxidase.
    Brand SE; Rajagukguk S; Ganesan K; Geren L; Fabian M; Han D; Gennis RB; Durham B; Millett F
    Biochemistry; 2007 Dec; 46(50):14610-8. PubMed ID: 18027981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connecting CuA with metal centers of heme a, heme a
    Ramasarma T; Vaigundan D
    Biochem Biophys Res Commun; 2019 Mar; 510(2):261-265. PubMed ID: 30686530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox analysis of the cytochrome o-type quinol oxidase complex of Escherichia coli reveals three redox components.
    Bolgiano B; Salmon I; Ingledew WJ; Poole RK
    Biochem J; 1991 Mar; 274 ( Pt 3)(Pt 3):723-30. PubMed ID: 1849404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.