BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19534726)

  • 1. A novel p53 target gene, S100A9, induces p53-dependent cellular apoptosis and mediates the p53 apoptosis pathway.
    Li C; Chen H; Ding F; Zhang Y; Luo A; Wang M; Liu Z
    Biochem J; 2009 Aug; 422(2):363-72. PubMed ID: 19534726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. p53 upregulates death receptor 4 expression through an intronic p53 binding site.
    Liu X; Yue P; Khuri FR; Sun SY
    Cancer Res; 2004 Aug; 64(15):5078-83. PubMed ID: 15289308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypoxia induces p53-dependent transactivation and Fas/CD95-dependent apoptosis.
    Liu T; Laurell C; Selivanova G; Lundeberg J; Nilsson P; Wiman KG
    Cell Death Differ; 2007 Mar; 14(3):411-21. PubMed ID: 16917513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The calcium binding protein S100A9 is essential for pancreatic leukocyte infiltration and induces disruption of cell-cell contacts.
    Schnekenburger J; Schick V; Krüger B; Manitz MP; Sorg C; Nacken W; Kerkhoff C; Kahlert A; Mayerle J; Domschke W; Lerch MM
    J Cell Physiol; 2008 Aug; 216(2):558-67. PubMed ID: 18452188
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IL-10-dependent S100A8 gene induction in monocytes/macrophages by double-stranded RNA.
    Endoh Y; Chung YM; Clark IA; Geczy CL; Hsu K
    J Immunol; 2009 Feb; 182(4):2258-68. PubMed ID: 19201880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity.
    Leukert N; Vogl T; Strupat K; Reichelt R; Sorg C; Roth J
    J Mol Biol; 2006 Jun; 359(4):961-72. PubMed ID: 16690079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. FGF1 inhibits p53-dependent apoptosis and cell cycle arrest via an intracrine pathway.
    Bouleau S; Grimal H; Rincheval V; Godefroy N; Mignotte B; Vayssière JL; Renaud F
    Oncogene; 2005 Nov; 24(53):7839-49. PubMed ID: 16091747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of STAG1 as a key mediator of a p53-dependent apoptotic pathway.
    Anazawa Y; Arakawa H; Nakagawa H; Nakamura Y
    Oncogene; 2004 Oct; 23(46):7621-7. PubMed ID: 15361841
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel mechanism for p53 to regulate its target gene ECK in signaling apoptosis.
    Jin YJ; Wang J; Qiao C; Hei TK; Brandt-Rauf PW; Yin Y
    Mol Cancer Res; 2006 Oct; 4(10):769-78. PubMed ID: 17050670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The intracellular domain of the amyloid precursor protein (AICD) enhances the p53-mediated apoptosis.
    Ozaki T; Li Y; Kikuchi H; Tomita T; Iwatsubo T; Nakagawara A
    Biochem Biophys Res Commun; 2006 Dec; 351(1):57-63. PubMed ID: 17054906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p53, apoptosis and axon-guidance molecules.
    Arakawa H
    Cell Death Differ; 2005 Aug; 12(8):1057-65. PubMed ID: 15818407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human bladder cancer cells undergo cisplatin-induced apoptosis that is associated with p53-dependent and p53-independent responses.
    Konstantakou EG; Voutsinas GE; Karkoulis PK; Aravantinos G; Margaritis LH; Stravopodis DJ
    Int J Oncol; 2009 Aug; 35(2):401-16. PubMed ID: 19578756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. p53 targets identified by protein expression profiling.
    Rahman-Roblick R; Roblick UJ; Hellman U; Conrotto P; Liu T; Becker S; Hirschberg D; Jörnvall H; Auer G; Wiman KG
    Proc Natl Acad Sci U S A; 2007 Mar; 104(13):5401-6. PubMed ID: 17372198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focused PCR screen reveals p53 dependence of nitric oxide-induced apoptosis and up-regulation of maspin and plasminogen activator inhibitor-1 in tumor cells.
    Lim S; Hung AC; Porter AG
    Mol Cancer Res; 2009 Jan; 7(1):55-66. PubMed ID: 19147537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Downregulation of stathmin expression is mediated directly by Egr1 and associated with p53 activity in lung cancer cell line A549.
    Fang L; Min L; Lin Y; Ping G; Rui W; Ying Z; Xi W; Ting H; Li L; Ke D; Jihong R; Huizhong Z
    Cell Signal; 2010 Jan; 22(1):166-73. PubMed ID: 19786090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of protein Citrullination through p53/PADI4 network in DNA damage response.
    Tanikawa C; Ueda K; Nakagawa H; Yoshida N; Nakamura Y; Matsuda K
    Cancer Res; 2009 Nov; 69(22):8761-9. PubMed ID: 19843866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. XEDAR as a putative colorectal tumor suppressor that mediates p53-regulated anoikis pathway.
    Tanikawa C; Furukawa Y; Yoshida N; Arakawa H; Nakamura Y; Matsuda K
    Oncogene; 2009 Aug; 28(34):3081-92. PubMed ID: 19543321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human DDA3 is an oncoprotein down-regulated by p53 and DNA damage.
    Hsieh WJ; Hsieh SC; Chen CC; Wang FF
    Biochem Biophys Res Commun; 2008 May; 369(2):567-72. PubMed ID: 18291097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. p53RDL1 regulates p53-dependent apoptosis.
    Tanikawa C; Matsuda K; Fukuda S; Nakamura Y; Arakawa H
    Nat Cell Biol; 2003 Mar; 5(3):216-23. PubMed ID: 12598906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptional down-regulation of Bcl-2 by vinorelbine: identification of a novel binding site of p53 on Bcl-2 promoter.
    Bourgarel-Rey V; Savry A; Hua G; Carré M; Bressin C; Chacon C; Imbert J; Braguer D; Barra Y
    Biochem Pharmacol; 2009 Nov; 78(9):1148-56. PubMed ID: 19555669
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.