These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19534748)

  • 1. Massive non-natural proteins structure prediction using grid technologies.
    Minervini G; Evangelista G; Villanova L; Slanzi D; De Lucrezia D; Poli I; Luisi PL; Polticelli F
    BMC Bioinformatics; 2009 Jun; 10 Suppl 6(Suppl 6):S22. PubMed ID: 19534748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico structural study of random amino acid sequence proteins not present in nature.
    Prymula K; Piwowar M; Kochanczyk M; Flis L; Malawski M; Szepieniec T; Evangelista G; Minervini G; Polticelli F; Wiśniowski Z; Sałapa K; Matczyńska E; Roterman I
    Chem Biodivers; 2009 Dec; 6(12):2311-36. PubMed ID: 20020465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rosetta:MSF:NN: Boosting performance of multi-state computational protein design with a neural network.
    Nazet J; Lang E; Merkl R
    PLoS One; 2021; 16(8):e0256691. PubMed ID: 34437621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Never born proteins as a test case for ab initio protein structures prediction.
    Minervini G; Evangelista G; Polticelli F; Piwowar M; Kochanczyk M; Flis L; Malawski M; Szepieniec T; Wiśniowski Z; Matczyńska E; Prymula K; Roterman I
    Bioinformation; 2008; 3(4):177-9. PubMed ID: 19238243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein secondary structure appears to be robust under in silico evolution while protein disorder appears not to be.
    Schaefer C; Schlessinger A; Rost B
    Bioinformatics; 2010 Mar; 26(5):625-31. PubMed ID: 20081223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural protein sequences are more intrinsically disordered than random sequences.
    Yu JF; Cao Z; Yang Y; Wang CL; Su ZD; Zhao YW; Wang JH; Zhou Y
    Cell Mol Life Sci; 2016 Aug; 73(15):2949-57. PubMed ID: 26801222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tale of two symmetrical tails: structural and functional characteristics of palindromes in proteins.
    Sheari A; Kargar M; Katanforoush A; Arab S; Sadeghi M; Pezeshk H; Eslahchi C; Marashi SA
    BMC Bioinformatics; 2008 Jun; 9():274. PubMed ID: 18547401
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designability of alpha-helical proteins.
    Emberly EG; Wingreen NS; Tang C
    Proc Natl Acad Sci U S A; 2002 Aug; 99(17):11163-8. PubMed ID: 12177419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing fragment-based protein structure prediction by customising fragment cardinality according to local secondary structure.
    Abbass J; Nebel JC
    BMC Bioinformatics; 2020 May; 21(1):170. PubMed ID: 32357827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of beta-turns at over 80% accuracy based on an ensemble of predicted secondary structures and multiple alignments.
    Zheng C; Kurgan L
    BMC Bioinformatics; 2008 Oct; 9():430. PubMed ID: 18847492
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel and antiparallel β-strands differ in amino acid composition and availability of short constituent sequences.
    Tsutsumi M; Otaki JM
    J Chem Inf Model; 2011 Jun; 51(6):1457-64. PubMed ID: 21520893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Random protein sequences can form defined secondary structures and are well-tolerated in vivo.
    Tretyachenko V; Vymětal J; Bednárová L; Kopecký V; Hofbauerová K; Jindrová H; Hubálek M; Souček R; Konvalinka J; Vondrášek J; Hlouchová K
    Sci Rep; 2017 Nov; 7(1):15449. PubMed ID: 29133927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences.
    Mizianty MJ; Kurgan L
    BMC Bioinformatics; 2009 Dec; 10():414. PubMed ID: 20003388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving computational protein design by using structure-derived sequence profile.
    Dai L; Yang Y; Kim HR; Zhou Y
    Proteins; 2010 Aug; 78(10):2338-48. PubMed ID: 20544969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary structure characterization based on amino acid composition and availability in proteins.
    Otaki JM; Tsutsumi M; Gotoh T; Yamamoto H
    J Chem Inf Model; 2010 Apr; 50(4):690-700. PubMed ID: 20210310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Random Coils of Proteins Situated Between a Beta Strand and an Alpha Helix Demonstrate Decreased Solvent Accessibility.
    Khrustalev VV
    Protein J; 2020 Aug; 39(4):308-317. PubMed ID: 32627111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detecting compensatory covariation signals in protein evolution using reconstructed ancestral sequences.
    Fukami-Kobayashi K; Schreiber DR; Benner SA
    J Mol Biol; 2002 Jun; 319(3):729-43. PubMed ID: 12054866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PATSIM: Prediction and analysis of protein sequences using hybrid Knuth-Morris Pratt (KMP) and Boyer-Moore (BM) algorithm.
    Manikandan P; Ramyachitra D
    Gene; 2018 May; 657():50-59. PubMed ID: 29501620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate prediction for atomic-level protein design and its application in diversifying the near-optimal sequence space.
    Fromer M; Yanover C
    Proteins; 2009 May; 75(3):682-705. PubMed ID: 19003998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The s2D method: simultaneous sequence-based prediction of the statistical populations of ordered and disordered regions in proteins.
    Sormanni P; Camilloni C; Fariselli P; Vendruscolo M
    J Mol Biol; 2015 Feb; 427(4):982-996. PubMed ID: 25534081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.