These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

490 related articles for article (PubMed ID: 19534844)

  • 21. Molecular Evolution of Malacostracan Short Wavelength Sensitive Opsins.
    Palecanda S; Madrid E; Porter ML
    J Mol Evol; 2023 Dec; 91(6):806-818. PubMed ID: 37940679
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of photoreceptor cell types in the little brown bat Myotis lucifugus (Vespertilionidae).
    Feller KD; Lagerholm S; Clubwala R; Silver MT; Haughey D; Ryan JM; Loew ER; Deutschlander ME; Kenyon KL
    Comp Biochem Physiol B Biochem Mol Biol; 2009 Dec; 154(4):412-8. PubMed ID: 19720154
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Adaptive gene loss reflects differences in the visual ecology of basal vertebrates.
    Davies WL; Collin SP; Hunt DM
    Mol Biol Evol; 2009 Aug; 26(8):1803-9. PubMed ID: 19398493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Jellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade.
    Koyanagi M; Takano K; Tsukamoto H; Ohtsu K; Tokunaga F; Terakita A
    Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15576-80. PubMed ID: 18832159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional characterization, tuning, and regulation of visual pigment gene expression in an anadromous lamprey.
    Davies WL; Cowing JA; Carvalho LS; Potter IC; Trezise AE; Hunt DM; Collin SP
    FASEB J; 2007 Sep; 21(11):2713-24. PubMed ID: 17463225
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cone visual pigments of aquatic mammals.
    Newman LA; Robinson PR
    Vis Neurosci; 2005; 22(6):873-9. PubMed ID: 16469194
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tuning of photoreceptor function in three mantis shrimp species that inhabit a range of depths. II. Filter pigments.
    Cronin TW; Caldwell RL
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Apr; 188(3):187-97. PubMed ID: 11976886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A cure for the blues: opsin duplication and subfunctionalization for short-wavelength sensitivity in jewel beetles (Coleoptera: Buprestidae).
    Lord NP; Plimpton RL; Sharkey CR; Suvorov A; Lelito JP; Willardson BM; Bybee SM
    BMC Evol Biol; 2016 May; 16(1):107. PubMed ID: 27193495
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Early duplication and functional diversification of the opsin gene family in insects.
    Spaethe J; Briscoe AD
    Mol Biol Evol; 2004 Aug; 21(8):1583-94. PubMed ID: 15155799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spectral tuning of the long wavelength-sensitive cone pigment in four Australian marsupials.
    Arrese CA; Beazley LD; Ferguson MC; Oddy A; Hunt DM
    Gene; 2006 Oct; 381():13-7. PubMed ID: 16859843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Opsin Expression in the Central Nervous System of the Mantis Shrimp Neogonodactylus oerstedii.
    Donohue MW; Carleton KL; Cronin TW
    Biol Bull; 2017 Aug; 233(1):58-69. PubMed ID: 29182505
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Opsin evolution and expression in arthropod compound eyes and ocelli: insights from the cricket Gryllus bimaculatus.
    Henze MJ; Dannenhauer K; Kohler M; Labhart T; Gesemann M
    BMC Evol Biol; 2012 Aug; 12():163. PubMed ID: 22935102
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diel changes in the expression of long wavelength-sensitive and ultraviolet-sensitive opsin genes in the Japanese firefly, Luciola cruciata.
    Oba Y; Kainuma T
    Gene; 2009 May; 436(1-2):66-70. PubMed ID: 19232386
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression patterns of the opsin 5-related genes in the developing chicken retina.
    Tomonari S; Migita K; Takagi A; Noji S; Ohuchi H
    Dev Dyn; 2008 Jul; 237(7):1910-22. PubMed ID: 18570255
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rod and cone opsin families differ in spectral tuning domains but not signal transducing domains as judged by saturated evolutionary trace analysis.
    Carleton KL; Spady TC; Cote RH
    J Mol Evol; 2005 Jul; 61(1):75-89. PubMed ID: 15988624
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characterization of the long-wavelength opsin from Mecoptera and Siphonaptera: does a flea see?
    Taylor SD; de la Cruz KD; Porter ML; Whiting MF
    Mol Biol Evol; 2005 May; 22(5):1165-74. PubMed ID: 15703237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Eyeshine and spectral tuning of long wavelength-sensitive rhodopsins: no evidence for red-sensitive photoreceptors among five Nymphalini butterfly species.
    Briscoe AD; Bernard GD
    J Exp Biol; 2005 Feb; 208(Pt 4):687-96. PubMed ID: 15695761
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tuning of photoreceptor function in three mantis shrimp species that inhabit a range of depths. I. Visual pigments.
    Cronin TW; Caldwell RL; Erdmann MV
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Apr; 188(3):179-86. PubMed ID: 11976885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gene duplication is an evolutionary mechanism for expanding spectral diversity in the long-wavelength photopigments of butterflies.
    Frentiu FD; Bernard GD; Sison-Mangus MP; Brower AV; Briscoe AD
    Mol Biol Evol; 2007 Sep; 24(9):2016-28. PubMed ID: 17609538
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adaptive molecular evolution in the opsin genes of rapidly speciating cichlid species.
    Spady TC; Seehausen O; Loew ER; Jordan RC; Kocher TD; Carleton KL
    Mol Biol Evol; 2005 Jun; 22(6):1412-22. PubMed ID: 15772376
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.