These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 19535289)

  • 1. Single-trial discrimination of type and speed of wrist movements from EEG recordings.
    Gu Y; Dremstrup K; Farina D
    Clin Neurophysiol; 2009 Aug; 120(8):1596-600. PubMed ID: 19535289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Offline Identification of Imagined Speed of Wrist Movements in Paralyzed ALS Patients from Single-Trial EEG.
    Gu Y; Farina D; Murguialday AR; Dremstrup K; Montoya P; Birbaumer N
    Front Neurosci; 2009; 3():62. PubMed ID: 20582286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Movement-related cortical potentials allow discrimination of rate of torque development in imaginary isometric plantar flexion.
    do Nascimento OF; Farina D
    IEEE Trans Biomed Eng; 2008 Nov; 55(11):2675-8. PubMed ID: 18990639
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of task parameters from movement-related cortical potentials.
    Gu Y; do Nascimento OF; Lucas MF; Farina D
    Med Biol Eng Comput; 2009 Dec; 47(12):1257-64. PubMed ID: 19730913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of spatial filters and features for the detection and classification of movement-related cortical potentials in healthy individuals and stroke patients.
    Jochumsen M; Niazi IK; Mrachacz-Kersting N; Jiang N; Farina D; Dremstrup K
    J Neural Eng; 2015 Oct; 12(5):056003. PubMed ID: 26214339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting and classifying movement-related cortical potentials associated with hand movements in healthy subjects and stroke patients from single-electrode, single-trial EEG.
    Jochumsen M; Niazi IK; Taylor D; Farina D; Dremstrup K
    J Neural Eng; 2015 Oct; 12(5):056013. PubMed ID: 26305233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Movement-related parameters modulate cortical activity during imaginary isometric plantar-flexions.
    do Nascimento OF; Nielsen KD; Voigt M
    Exp Brain Res; 2006 May; 171(1):78-90. PubMed ID: 16320044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A two-stage four-class BCI based on imaginary movements of the left and the right wrist.
    Vučković A; Sepulveda F
    Med Eng Phys; 2012 Sep; 34(7):964-71. PubMed ID: 22119365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decoding Three-Dimensional Trajectory of Executed and Imagined Arm Movements From Electroencephalogram Signals.
    Kim JH; Bießmann F; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):867-76. PubMed ID: 25474811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Imagined Hand Clenching Force and Speed Modulate Brain Activity and Are Classified by NIRS Combined With EEG.
    Fu Y; Xiong X; Jiang C; Xu B; Li Y; Li H
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1641-1652. PubMed ID: 27849544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of Hand Grasp Kinetics and Types Using Movement-Related Cortical Potentials and EEG Rhythms.
    Jochumsen M; Rovsing C; Rovsing H; Niazi IK; Dremstrup K; Kamavuako EN
    Comput Intell Neurosci; 2017; 2017():7470864. PubMed ID: 28951736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disentangling motor execution from motor imagery with the phantom limb.
    Raffin E; Mattout J; Reilly KT; Giraux P
    Brain; 2012 Feb; 135(Pt 2):582-95. PubMed ID: 22345089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EEG-based classification of fast and slow hand movements using Wavelet-CSP algorithm.
    Robinson N; Vinod AP; Ang KK; Tee KP; Guan CT
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2123-32. PubMed ID: 23446029
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissociation of motor preparation from memory and attentional processes using movement-related cortical potentials.
    Dirnberger G; Reumann M; Endl W; Lindinger G; Lang W; Rothwell JC
    Exp Brain Res; 2000 Nov; 135(2):231-40. PubMed ID: 11131508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between speed and EEG activity during imagined and executed hand movements.
    Yuan H; Perdoni C; He B
    J Neural Eng; 2010 Apr; 7(2):26001. PubMed ID: 20168002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG neural correlates of goal-directed movement intention.
    Pereira J; Ofner P; Schwarz A; Sburlea AI; Müller-Putz GR
    Neuroimage; 2017 Apr; 149():129-140. PubMed ID: 28131888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classification of motor imagery tasks for brain-computer interface applications by means of two equivalent dipoles analysis.
    Kamousi B; Liu Z; He B
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):166-71. PubMed ID: 16003895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EEG signatures of arm isometric exertions in preparation, planning and execution.
    Nasseroleslami B; Lakany H; Conway BA
    Neuroimage; 2014 Apr; 90():1-14. PubMed ID: 24355482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification and visualisation of differences between two motor tasks based on energy density maps for brain-computer interface applications.
    Vuckovic A; Sepulveda F
    Clin Neurophysiol; 2008 Feb; 119(2):446-58. PubMed ID: 18065266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classification of single trial motor imagery EEG recordings with subject adapted non-dyadic arbitrary time-frequency tilings.
    Ince NF; Arica S; Tewfik A
    J Neural Eng; 2006 Sep; 3(3):235-44. PubMed ID: 16921207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.