These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19535314)

  • 1. Resolution strategies for the finite-element-based solution of the ECG inverse problem.
    Wang D; Kirby RM; Johnson CR
    IEEE Trans Biomed Eng; 2010 Feb; 57(2):220-37. PubMed ID: 19535314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Finite-element-based discretization and regularization strategies for 3-D inverse electrocardiography.
    Wang D; Kirby RM; Johnson CR
    IEEE Trans Biomed Eng; 2011 Jun; 58(6):1827-38. PubMed ID: 21382763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesh resolution impacts the accuracy of inverse and forward ECG problems.
    Bing Yao ; Shenli Pei ; Hui Yang
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4047-4050. PubMed ID: 28269171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discretization error analysis and adaptive meshing algorithms for fluorescence diffuse optical tomography: part I.
    Guven M; Reilly-Raska L; Zhou L; Yazici B
    IEEE Trans Med Imaging; 2010 Feb; 29(2):217-29. PubMed ID: 20129842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Discretization error analysis and adaptive meshing algorithms for fluorescence diffuse optical tomography: part II.
    Guven M; Zhou L; Reilly-Raska L; Yazici B
    IEEE Trans Med Imaging; 2010 Feb; 29(2):230-45. PubMed ID: 19709967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solving the ECG forward problem by means of standard h- and h-hierarchical adaptive linear boundary element method: comparison with two refinement schemes.
    Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2009 May; 56(5):1454-64. PubMed ID: 19272882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Truncated total least squares: a new regularization method for the solution of ECG inverse problems.
    Shou G; Xia L; Jiang M; Wei Q; Liu F; Crozier S
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1327-35. PubMed ID: 18390323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of multivariate adaptive non-parametric reduced-order model for solving the inverse electrocardiography problem: a simulation study.
    Onak ÖN; Dogrusoz YS; Weber GW
    Med Biol Eng Comput; 2019 May; 57(5):967-993. PubMed ID: 30506117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solving the ECG forward problem by means of a meshless finite element method.
    Li ZS; Zhu SA; He B
    Phys Med Biol; 2007 Jul; 52(13):N287-96. PubMed ID: 17664567
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A convenient scheme for coupling a finite element curvilinear mesh to a finite element voxel mesh: application to the heart.
    Hopenfeld B
    Biomed Eng Online; 2006 Nov; 5():60. PubMed ID: 17112373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A method to solve the forward problem in magnetic induction tomography based on the weakly coupled field approximation.
    Dekdouk B; Yin W; Ktistis C; Armitage DW; Peyton AJ
    IEEE Trans Biomed Eng; 2010 Apr; 57(4):914-21. PubMed ID: 19932988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid multilevel sparse reconstruction for a whole domain bioluminescence tomography using adaptive finite element.
    Yu J; He X; Geng G; Liu F; Jiao LC
    Comput Math Methods Med; 2013; 2013():548491. PubMed ID: 23533542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new finite element method for inverse problems in structural analysis: application to atherosclerotic plaque elasticity reconstruction.
    Bouvier A; Deleaval F; Doyley MM; Tacheau A; Finet G; Le Floc'h S; Cloutier G; Pettigrew RI; Ohayon J
    Comput Methods Biomech Biomed Engin; 2014; 17 Suppl 1():16-7. PubMed ID: 25074142
    [No Abstract]   [Full Text] [Related]  

  • 14. The application of subspace preconditioned LSQR algorithm for solving the electrocardiography inverse problem.
    Jiang M; Xia L; Huang W; Shou G; Liu F; Crozier S
    Med Eng Phys; 2009 Oct; 31(8):979-85. PubMed ID: 19564127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem.
    Jiang M; Xia L; Shou G; Tang M
    Phys Med Biol; 2007 Mar; 52(5):1277-94. PubMed ID: 17301454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patient-specific identification of optimal ubiquitous electrocardiogram (U-ECG) placement using a three-dimensional model of cardiac electrophysiology.
    Lim KM; Jeon JW; Gyeong MS; Hong SB; Ko BH; Bae SK; Shin KS; Shim EB
    IEEE Trans Biomed Eng; 2013 Jan; 60(1):245-9. PubMed ID: 22893363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of domain shape modeling and measurement errors on the 2-D D-bar method for EIT.
    Murphy EK; Mueller JL
    IEEE Trans Med Imaging; 2009 Oct; 28(10):1576-84. PubMed ID: 19447702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [The selection of Tikhonov regularization parameter in dynamic electrical impedance imaging].
    Peng Y; Mo Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Dec; 20(4):571-3. PubMed ID: 14716847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Finite-element neural networks for solving differential equations.
    Ramuhalli P; Udpa L; Udpa SS
    IEEE Trans Neural Netw; 2005 Nov; 16(6):1381-92. PubMed ID: 16342482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binary optimization for source localization in the inverse problem of ECG.
    Potyagaylo D; Cortés EG; Schulze WH; Dössel O
    Med Biol Eng Comput; 2014 Sep; 52(9):717-28. PubMed ID: 25008005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.