BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 19535340)

  • 1. Crystal structures of human SIRT3 displaying substrate-induced conformational changes.
    Jin L; Wei W; Jiang Y; Peng H; Cai J; Mao C; Dai H; Choy W; Bemis JE; Jirousek MR; Milne JC; Westphal CH; Perni RB
    J Biol Chem; 2009 Sep; 284(36):24394-405. PubMed ID: 19535340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2.
    Schwer B; Bunkenborg J; Verdin RO; Andersen JS; Verdin E
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10224-10229. PubMed ID: 16788062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5.
    Schlicker C; Gertz M; Papatheodorou P; Kachholz B; Becker CF; Steegborn C
    J Mol Biol; 2008 Oct; 382(3):790-801. PubMed ID: 18680753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIRT3 substrate specificity determined by peptide arrays and machine learning.
    Smith BC; Settles B; Hallows WC; Craven MW; Denu JM
    ACS Chem Biol; 2011 Feb; 6(2):146-57. PubMed ID: 20945913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10.
    Yang Y; Cimen H; Han MJ; Shi T; Deng JH; Koc H; Palacios OM; Montier L; Bai Y; Tong Q; Koc EC
    J Biol Chem; 2010 Mar; 285(10):7417-29. PubMed ID: 20042612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-lysine propionylation controls the activity of propionyl-CoA synthetase.
    Garrity J; Gardner JG; Hawse W; Wolberger C; Escalante-Semerena JC
    J Biol Chem; 2007 Oct; 282(41):30239-45. PubMed ID: 17684016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5).
    Zhou Y; Zhang H; He B; Du J; Lin H; Cerione RA; Hao Q
    J Biol Chem; 2012 Aug; 287(34):28307-14. PubMed ID: 22767592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into Lysine Deacetylation of Natively Folded Substrate Proteins by Sirtuins.
    Knyphausen P; de Boor S; Kuhlmann N; Scislowski L; Extra A; Baldus L; Schacherl M; Baumann U; Neundorf I; Lammers M
    J Biol Chem; 2016 Jul; 291(28):14677-94. PubMed ID: 27226597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SIRT3 regulates mitochondrial protein acetylation and intermediary metabolism.
    Hirschey MD; Shimazu T; Huang JY; Schwer B; Verdin E
    Cold Spring Harb Symp Quant Biol; 2011; 76():267-77. PubMed ID: 22114326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biochemical and thermodynamic analyses of Salmonella enterica Pat, a multidomain, multimeric N(ε)-lysine acetyltransferase involved in carbon and energy metabolism.
    Thao S; Escalante-Semerena JC
    mBio; 2011; 2(5):. PubMed ID: 22010215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acetate metabolism and aging: An emerging connection.
    Shimazu T; Hirschey MD; Huang JY; Ho LT; Verdin E
    Mech Ageing Dev; 2010; 131(7-8):511-6. PubMed ID: 20478325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases.
    Hallows WC; Lee S; Denu JM
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10230-10235. PubMed ID: 16790548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial sirtuins.
    Huang JY; Hirschey MD; Shimazu T; Ho L; Verdin E
    Biochim Biophys Acta; 2010 Aug; 1804(8):1645-51. PubMed ID: 20060508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide.
    Hoff KG; Avalos JL; Sens K; Wolberger C
    Structure; 2006 Aug; 14(8):1231-40. PubMed ID: 16905097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis of carba-NAD and the structures of its ternary complexes with SIRT3 and SIRT5.
    Szczepankiewicz BG; Dai H; Koppetsch KJ; Qian D; Jiang F; Mao C; Perni RB
    J Org Chem; 2012 Sep; 77(17):7319-29. PubMed ID: 22849721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SIRT1 and SIRT3 deacetylate homologous substrates: AceCS1,2 and HMGCS1,2.
    Hirschey MD; Shimazu T; Capra JA; Pollard KS; Verdin E
    Aging (Albany NY); 2011 Jun; 3(6):635-42. PubMed ID: 21701047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Sirtuin Network Reveals Dynamic SIRT3-Dependent Deacetylation in Response to Membrane Depolarization.
    Yang W; Nagasawa K; Münch C; Xu Y; Satterstrom K; Jeong S; Hayes SD; Jedrychowski MP; Vyas FS; Zaganjor E; Guarani V; Ringel AE; Gygi SP; Harper JW; Haigis MC
    Cell; 2016 Nov; 167(4):985-1000.e21. PubMed ID: 27881304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation.
    Feldman JL; Dittenhafer-Reed KE; Kudo N; Thelen JN; Ito A; Yoshida M; Denu JM
    Biochemistry; 2015 May; 54(19):3037-3050. PubMed ID: 25897714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3.
    Jin L; Galonek H; Israelian K; Choy W; Morrison M; Xia Y; Wang X; Xu Y; Yang Y; Smith JJ; Hoffmann E; Carney DP; Perni RB; Jirousek MR; Bemis JE; Milne JC; Sinclair DA; Westphal CH
    Protein Sci; 2009 Mar; 18(3):514-25. PubMed ID: 19241369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial protein acylation and intermediary metabolism: regulation by sirtuins and implications for metabolic disease.
    Newman JC; He W; Verdin E
    J Biol Chem; 2012 Dec; 287(51):42436-43. PubMed ID: 23086951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.