These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 19535416)

  • 1. Plug-and-play inference for disease dynamics: measles in large and small populations as a case study.
    He D; Ionides EL; King AA
    J R Soc Interface; 2010 Feb; 7(43):271-83. PubMed ID: 19535416
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Likelihood-based estimation of continuous-time epidemic models from time-series data: application to measles transmission in London.
    Cauchemez S; Ferguson NM
    J R Soc Interface; 2008 Aug; 5(25):885-97. PubMed ID: 18174112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameterizing state-space models for infectious disease dynamics by generalized profiling: measles in Ontario.
    Hooker G; Ellner SP; Roditi Lde V; Earn DJ
    J R Soc Interface; 2011 Jul; 8(60):961-74. PubMed ID: 21084339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases.
    Grenfell BT; Kleczkowski A; Gilligan CA; Bolker BM
    Stat Methods Med Res; 1995 Jun; 4(2):160-83. PubMed ID: 7582203
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical inference and model selection for the 1861 Hagelloch measles epidemic.
    Neal PJ; Roberts GO
    Biostatistics; 2004 Apr; 5(2):249-61. PubMed ID: 15054029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation and prediction for a mechanistic model of measles transmission using particle filtering and maximum likelihood estimation.
    Eilertson KE; Fricks J; Ferrari MJ
    Stat Med; 2019 Sep; 38(21):4146-4158. PubMed ID: 31290184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inference for ecological dynamical systems: a case study of two endemic diseases.
    Vasco DA
    Comput Math Methods Med; 2012; 2012():390694. PubMed ID: 22536295
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monte Carlo profile confidence intervals for dynamic systems.
    Ionides EL; Breto C; Park J; Smith RA; King AA
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28679663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inference for nonlinear epidemiological models using genealogies and time series.
    Rasmussen DA; Ratmann O; Koelle K
    PLoS Comput Biol; 2011 Aug; 7(8):e1002136. PubMed ID: 21901082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human birth seasonality: latitudinal gradient and interplay with childhood disease dynamics.
    Martinez-Bakker M; Bakker KM; King AA; Rohani P
    Proc Biol Sci; 2014 May; 281(1783):20132438. PubMed ID: 24695423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics.
    Xia Y; Bjørnstad ON; Grenfell BT
    Am Nat; 2004 Aug; 164(2):267-81. PubMed ID: 15278849
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interpreting time-series analyses for continuous-time biological models--measles as a case study.
    Glass K; Xia Y; Grenfell BT
    J Theor Biol; 2003 Jul; 223(1):19-25. PubMed ID: 12782113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deterministic and stochastic models for the seasonal variability of measles transmission.
    Mollison D; Din SU
    Math Biosci; 1993; 117(1-2):155-77. PubMed ID: 8400572
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic dynamics and a power law for measles variability.
    Keeling M; Grenfell B
    Philos Trans R Soc Lond B Biol Sci; 1999 Apr; 354(1384):769-76. PubMed ID: 10365402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Space, persistence and dynamics of measles epidemics.
    Bolker B; Grenfell B
    Philos Trans R Soc Lond B Biol Sci; 1995 May; 348(1325):309-20. PubMed ID: 8577828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulation of the transmission of measles: beyond the mass action principle.
    Zekri N; Clerc JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Apr; 65(4 Pt 2A):046108. PubMed ID: 12005927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of measles vaccine efficacy and critical vaccination coverage in a highly vaccinated population.
    van Boven M; Kretzschmar M; Wallinga J; O'Neill PD; Wichmann O; Hahné S
    J R Soc Interface; 2010 Nov; 7(52):1537-44. PubMed ID: 20392713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measles outbreaks in a population with declining vaccine uptake.
    Jansen VA; Stollenwerk N; Jensen HJ; Ramsay ME; Edmunds WJ; Rhodes CJ
    Science; 2003 Aug; 301(5634):804. PubMed ID: 12907792
    [No Abstract]   [Full Text] [Related]  

  • 19. A practical guide to pseudo-marginal methods for computational inference in systems biology.
    Warne DJ; Baker RE; Simpson MJ
    J Theor Biol; 2020 Jul; 496():110255. PubMed ID: 32223995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probabilistic measures of persistence and extinction in measles (meta)populations.
    Gunning CE; Wearing HJ
    Ecol Lett; 2013 Aug; 16(8):985-94. PubMed ID: 23782847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.