These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 19535416)

  • 21. Applying particle filtering in both aggregated and age-structured population compartmental models of pre-vaccination measles.
    Li X; Doroshenko A; Osgood ND
    PLoS One; 2018; 13(11):e0206529. PubMed ID: 30388138
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probabilistic measures of persistence and extinction in measles (meta)populations.
    Gunning CE; Wearing HJ
    Ecol Lett; 2013 Aug; 16(8):985-94. PubMed ID: 23782847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Predictability in a highly stochastic system: final size of measles epidemics in small populations.
    Caudron Q; Mahmud AS; Metcalf CJ; Gottfreðsson M; Viboud C; Cliff AD; Grenfell BT
    J R Soc Interface; 2015 Jan; 12(102):20141125. PubMed ID: 25411411
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An agent-based approach for modeling dynamics of contagious disease spread.
    Perez L; Dragicevic S
    Int J Health Geogr; 2009 Aug; 8():50. PubMed ID: 19656403
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A simple model for complex dynamical transitions in epidemics.
    Earn DJ; Rohani P; Bolker BM; Grenfell BT
    Science; 2000 Jan; 287(5453):667-70. PubMed ID: 10650003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bayesian Inference of Stochastic Dynamic Models Using Early-Rejection Methods Based on Sequential Stochastic Simulations.
    Zhang H; Chen J; Tian T
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1484-1494. PubMed ID: 33216717
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chaos and biological complexity in measles dynamics.
    Bolker BM; Grenfell BT
    Proc Biol Sci; 1993 Jan; 251(1330):75-81. PubMed ID: 8094567
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of variability in infection period on the persistence and spatial spread of infectious diseases.
    Keeling MJ; Grenfell BT
    Math Biosci; 1998 Jan; 147(2):207-26. PubMed ID: 9433063
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Demographic transition and the dynamics of measles in six provinces in China: A modeling study.
    Li S; Ma C; Hao L; Su Q; An Z; Ma F; Xie S; Xu A; Zhang Y; Ding Z; Li H; Cairns L; Wang H; Luo H; Wang N; Li L; Ferrari MJ
    PLoS Med; 2017 Apr; 14(4):e1002255. PubMed ID: 28376084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The dynamics of measles in sub-Saharan Africa.
    Ferrari MJ; Grais RF; Bharti N; Conlan AJ; Bjørnstad ON; Wolfson LJ; Guerin PJ; Djibo A; Grenfell BT
    Nature; 2008 Feb; 451(7179):679-84. PubMed ID: 18256664
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stochastic epidemics: the expected duration of the endemic period in higher dimensional models.
    Grasman J
    Math Biosci; 1998 Aug; 152(1):13-27. PubMed ID: 9727295
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characteristics of measles epidemics in China (1951-2004) and implications for elimination: A case study of three key locations.
    Yang W; Li J; Shaman J
    PLoS Comput Biol; 2019 Feb; 15(2):e1006806. PubMed ID: 30716080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Estimation of the population effectiveness of vaccination.
    Haber M
    Stat Med; 1997 Mar; 16(6):601-10. PubMed ID: 9131750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Understanding the persistence of measles: reconciling theory, simulation and observation.
    Keeling MJ; Grenfell BT
    Proc Biol Sci; 2002 Feb; 269(1489):335-43. PubMed ID: 11886620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling the Transmission of Measles and Rubella to Support Global Management Policy Analyses and Eradication Investment Cases.
    Thompson KM; Badizadegan ND
    Risk Anal; 2017 Jun; 37(6):1109-1131. PubMed ID: 28561947
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modelling the effect of urbanization on the transmission of an infectious disease.
    Zhang P; Atkinson PM
    Math Biosci; 2008 Jan; 211(1):166-85. PubMed ID: 18068198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A scaling analysis of measles epidemics in a small population.
    Rhodes CJ; Anderson RM
    Philos Trans R Soc Lond B Biol Sci; 1996 Dec; 351(1348):1679-88. PubMed ID: 9004320
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The basic reproduction number (R
    Guerra FM; Bolotin S; Lim G; Heffernan J; Deeks SL; Li Y; Crowcroft NS
    Lancet Infect Dis; 2017 Dec; 17(12):e420-e428. PubMed ID: 28757186
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Global Transmission Dynamics of Measles in the Measles Elimination Era.
    Furuse Y; Oshitani H
    Viruses; 2017 Apr; 9(4):. PubMed ID: 28420160
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Statistical inference for stochastic simulation models--theory and application.
    Hartig F; Calabrese JM; Reineking B; Wiegand T; Huth A
    Ecol Lett; 2011 Aug; 14(8):816-27. PubMed ID: 21679289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.