These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 19536071)
1. Cessation of blood-to-brain influx of interleukin-15 during development of EAE. Hsuchou H; Pan W; Wu X; Kastin AJ J Cereb Blood Flow Metab; 2009 Sep; 29(9):1568-78. PubMed ID: 19536071 [TBL] [Abstract][Full Text] [Related]
2. Cerebral interleukin-15 shows upregulation and beneficial effects in experimental autoimmune encephalomyelitis. Wu X; Pan W; He Y; Hsuchou H; Kastin AJ J Neuroimmunol; 2010 Jun; 223(1-2):65-72. PubMed ID: 20430449 [TBL] [Abstract][Full Text] [Related]
3. Saturable leptin transport across the BBB persists in EAE mice. Hsuchou H; Mishra PK; Kastin AJ; Wu X; Wang Y; Ouyang S; Pan W J Mol Neurosci; 2013 Oct; 51(2):364-70. PubMed ID: 23504255 [TBL] [Abstract][Full Text] [Related]
4. Permeation of blood-borne IL15 across the blood-brain barrier and the effect of LPS. Pan W; Hsuchou H; Yu C; Kastin AJ J Neurochem; 2008 Jul; 106(1):313-9. PubMed ID: 18384647 [TBL] [Abstract][Full Text] [Related]
5. Brain interleukin-15 in neuroinflammation and behavior. Pan W; Wu X; He Y; Hsuchou H; Huang EY; Mishra PK; Kastin AJ Neurosci Biobehav Rev; 2013 Feb; 37(2):184-92. PubMed ID: 23201098 [TBL] [Abstract][Full Text] [Related]
6. Molecular characterization and expression analysis of interleukin 15 (IL15) and interleukin-15 receptor subunit alpha (IL15Rα) in dojo loach (Misgurnus anguillicaudatus): Their salient roles during bacterial, parasitic and fungal infection. Chen X; Kong W; Yu Y; Dong S; Huang Z; Yu W; Xu J; Luo Y; Wang Q; Xu Z Mol Immunol; 2018 Nov; 103():293-305. PubMed ID: 30343118 [TBL] [Abstract][Full Text] [Related]
7. Physical Exercise Attenuates Experimental Autoimmune Encephalomyelitis by Inhibiting Peripheral Immune Response and Blood-Brain Barrier Disruption. Souza PS; Gonçalves ED; Pedroso GS; Farias HR; Junqueira SC; Marcon R; Tuon T; Cola M; Silveira PCL; Santos AR; Calixto JB; Souza CT; de Pinho RA; Dutra RC Mol Neurobiol; 2017 Aug; 54(6):4723-4737. PubMed ID: 27447807 [TBL] [Abstract][Full Text] [Related]
8. Differential permeability of the BBB in acute EAE: enhanced transport of TNT-alpha. Pan W; Banks WA; Kennedy MK; Gutierrez EG; Kastin AJ Am J Physiol; 1996 Oct; 271(4 Pt 1):E636-42. PubMed ID: 8897850 [TBL] [Abstract][Full Text] [Related]
9. Involvement of Claudin-11 in Disruption of Blood-Brain, -Spinal Cord, and -Arachnoid Barriers in Multiple Sclerosis. Uchida Y; Sumiya T; Tachikawa M; Yamakawa T; Murata S; Yagi Y; Sato K; Stephan A; Ito K; Ohtsuki S; Couraud PO; Suzuki T; Terasaki T Mol Neurobiol; 2019 Mar; 56(3):2039-2056. PubMed ID: 29984400 [TBL] [Abstract][Full Text] [Related]
11. Myxoma virus expressing a fusion protein of interleukin-15 (IL15) and IL15 receptor alpha has enhanced antitumor activity. Tosic V; Thomas DL; Kranz DM; Liu J; McFadden G; Shisler JL; MacNeill AL; Roy EJ PLoS One; 2014; 9(10):e109801. PubMed ID: 25329832 [TBL] [Abstract][Full Text] [Related]
12. Comparison of the timing of acute blood-brain barrier breakdown to rabbit immunoglobulin G in the cerebellum and spinal cord of mice with experimental autoimmune encephalomyelitis. Tonra JR; Reiseter BS; Kolbeck R; Nagashima K; Robertson R; Keyt B; Lindsay RM J Comp Neurol; 2001 Jan; 430(1):131-44. PubMed ID: 11135250 [TBL] [Abstract][Full Text] [Related]
13. Blood-brain barrier breakdown and increased intercellular adhesion molecule (ICAM-1/CD54) expression after Semliki Forest (A7) virus infection facilitates the development of experimental allergic encephalomyelitis. Erälinna JP; Soilu-Hänninen M; Röyttä M; Hukkanen V; Salmi AA; Salonen R J Neuroimmunol; 1996 May; 66(1-2):103-14. PubMed ID: 8964903 [TBL] [Abstract][Full Text] [Related]
14. Design and characterisation of a novel interleukin-15 receptor alpha fusion protein and analysis of interleukin-15 complexation. Schmid AS; Neri D PLoS One; 2019; 14(7):e0219313. PubMed ID: 31348785 [TBL] [Abstract][Full Text] [Related]
15. Activation of Glucagon-Like Peptide-1 Receptor Promotes Neuroprotection in Experimental Autoimmune Encephalomyelitis by Reducing Neuroinflammatory Responses. Lee CH; Jeon SJ; Cho KS; Moon E; Sapkota A; Jun HS; Ryu JH; Choi JW Mol Neurobiol; 2018 Apr; 55(4):3007-3020. PubMed ID: 28456941 [TBL] [Abstract][Full Text] [Related]
17. Mild experimental autoimmune encephalitis as a tool to induce blood-brain barrier dysfunction. Boettger MK; Weishaupt A; Geis C; Toyka KV; Sommer C J Neural Transm (Vienna); 2010 Feb; 117(2):165-9. PubMed ID: 19946712 [TBL] [Abstract][Full Text] [Related]
18. Interleukin-33 is released in spinal cord and suppresses experimental autoimmune encephalomyelitis in mice. Chen H; Sun Y; Lai L; Wu H; Xiao Y; Ming B; Gao M; Zou H; Xiong P; Xu Y; Tan Z; Gong F; Zheng F Neuroscience; 2015 Nov; 308():157-68. PubMed ID: 26363151 [TBL] [Abstract][Full Text] [Related]
19. Blood-brain barrier changes and cell invasion differ between therapeutic immune clearance of neurotrophic virus and CNS autoimmunity. Fabis MJ; Phares TW; Kean RB; Koprowski H; Hooper DC Proc Natl Acad Sci U S A; 2008 Oct; 105(40):15511-6. PubMed ID: 18829442 [TBL] [Abstract][Full Text] [Related]
20. Analysis of cytokine mRNA expression in the central nervous system of mice with experimental autoimmune encephalomyelitis reveals that IL-10 mRNA expression correlates with recovery. Kennedy MK; Torrance DS; Picha KS; Mohler KM J Immunol; 1992 Oct; 149(7):2496-505. PubMed ID: 1527389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]