These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 19536203)

  • 1. Prediction and validation of a mechanism to control the threshold for inhibitory synaptic plasticity.
    Kitagawa Y; Hirano T; Kawaguchi SY
    Mol Syst Biol; 2009; 5():280. PubMed ID: 19536203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic impact of temporal context of Ca²⁺ signals on inhibitory synaptic plasticity.
    Kawaguchi SY; Nagasaki N; Hirano T
    Sci Rep; 2011; 1():143. PubMed ID: 22355660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of inhibitory synaptic plasticity in a Purkinje neuron.
    Hirano T; Kawaguchi SY
    Cerebellum; 2012 Jun; 11(2):453-4. PubMed ID: 22090365
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signaling cascade regulating long-term potentiation of GABA(A) receptor responsiveness in cerebellar Purkinje neurons.
    Kawaguchi SY; Hirano T
    J Neurosci; 2002 May; 22(10):3969-76. PubMed ID: 12019316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gating of long-term depression by Ca2+/calmodulin-dependent protein kinase II through enhanced cGMP signalling in cerebellar Purkinje cells.
    Kawaguchi SY; Hirano T
    J Physiol; 2013 Apr; 591(7):1707-30. PubMed ID: 23297306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding of Filamentous Actin to CaMKII as Potential Regulation Mechanism of Bidirectional Synaptic Plasticity by β CaMKII in Cerebellar Purkinje Cells.
    Pinto TM; Schilstra MJ; Roque AC; Steuber V
    Sci Rep; 2020 Jun; 10(1):9019. PubMed ID: 32488204
    [TBL] [Abstract][Full Text] [Related]  

  • 7. STDP in a bistable synapse model based on CaMKII and associated signaling pathways.
    Graupner M; Brunel N
    PLoS Comput Biol; 2007 Nov; 3(11):e221. PubMed ID: 18052535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Opposite regulation of inhibitory synaptic plasticity by α and β subunits of Ca(2+)/calmodulin-dependent protein kinase II.
    Nagasaki N; Hirano T; Kawaguchi SY
    J Physiol; 2014 Nov; 592(22):4891-909. PubMed ID: 25217378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Origin of Physiological Local mGluR1 Supralinear Ca
    Ait Ouares K; Canepari M
    J Neurosci; 2020 Feb; 40(9):1795-1809. PubMed ID: 31969470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Modeling and Analysis Study Reveals That CaMKII in Synaptic Plasticity Is a Dominant Affecter in CaM Systems in a T286 Phosphorylation-Dependent Manner.
    Stevens-Bullmore H; Kulasiri D; Samarasinghe S
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mGluR1-mediated facilitation of long-term potentiation at inhibitory synapses on a cerebellar Purkinje neuron.
    Sugiyama Y; Kawaguchi SY; Hirano T
    Eur J Neurosci; 2008 Feb; 27(4):884-96. PubMed ID: 18279362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CaMKII: a central molecular organizer of synaptic plasticity, learning and memory.
    Yasuda R; Hayashi Y; Hell JW
    Nat Rev Neurosci; 2022 Nov; 23(11):666-682. PubMed ID: 36056211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. betaCaMKII controls the direction of plasticity at parallel fiber-Purkinje cell synapses.
    van Woerden GM; Hoebeek FE; Gao Z; Nagaraja RY; Hoogenraad CC; Kushner SA; Hansel C; De Zeeuw CI; Elgersma Y
    Nat Neurosci; 2009 Jul; 12(7):823-5. PubMed ID: 19503086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A spatial model of autophosphorylation of Ca
    Bartol TM; Ordyan M; Sejnowski TJ; Rangamani P; Kennedy MB
    bioRxiv; 2024 Jul; ():. PubMed ID: 38352446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CaMKII: claiming center stage in postsynaptic function and organization.
    Hell JW
    Neuron; 2014 Jan; 81(2):249-65. PubMed ID: 24462093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CaMKII: a molecular substrate for synaptic plasticity and memory.
    Shonesy BC; Jalan-Sakrikar N; Cavener VS; Colbran RJ
    Prog Mol Biol Transl Sci; 2014; 122():61-87. PubMed ID: 24484698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A model for molecular mechanisms of synaptic competition for a finite resource.
    Okamoto H; Ichikawa K
    Biosystems; 2000 Feb; 55(1-3):65-71. PubMed ID: 10745110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interneuron- and GABA(A) receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells.
    He Q; Duguid I; Clark B; Panzanelli P; Patel B; Thomas P; Fritschy JM; Smart TG
    Nat Commun; 2015 Jul; 6():7364. PubMed ID: 26179122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium threshold shift enables frequency-independent control of plasticity by an instructive signal.
    Piochon C; Titley HK; Simmons DH; Grasselli G; Elgersma Y; Hansel C
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):13221-13226. PubMed ID: 27799554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reciprocal activation within a kinase effector complex: A mechanism for the persistence of molecular memory.
    Saneyoshi T
    Brain Res Bull; 2021 May; 170():58-64. PubMed ID: 33556559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.