These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1201 related articles for article (PubMed ID: 19536559)

  • 1. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. II. Input selectivity--symmetry breaking.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):103-14. PubMed ID: 19536559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks. I. Input selectivity--strengthening correlated input pathways.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Aug; 101(2):81-102. PubMed ID: 19536560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks V: self-organization schemes and weight dependence.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2010 Nov; 103(5):365-86. PubMed ID: 20882297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks IV: structuring synaptic pathways among recurrent connections.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Dec; 101(5-6):427-44. PubMed ID: 19937070
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spike-timing-dependent plasticity for neurons with recurrent connections.
    Burkitt AN; Gilson M; van Hemmen JL
    Biol Cybern; 2007 May; 96(5):533-46. PubMed ID: 17415586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence of network structure due to spike-timing-dependent plasticity in recurrent neuronal networks III: Partially connected neurons driven by spontaneous activity.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Biol Cybern; 2009 Dec; 101(5-6):411-26. PubMed ID: 19937071
    [TBL] [Abstract][Full Text] [Related]  

  • 7. What can a neuron learn with spike-timing-dependent plasticity?
    Legenstein R; Naeger C; Maass W
    Neural Comput; 2005 Nov; 17(11):2337-82. PubMed ID: 16156932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperation of spike timing-dependent and heterosynaptic plasticities in neural networks: a Fokker-Planck approach.
    Zhu L; Lai YC; Hoppensteadt FC; He J
    Chaos; 2006 Jun; 16(2):023105. PubMed ID: 16822008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. STDP provides the substrate for igniting synfire chains by spatiotemporal input patterns.
    Hosaka R; Araki O; Ikeguchi T
    Neural Comput; 2008 Feb; 20(2):415-35. PubMed ID: 18045011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spike-timing dynamics of neuronal groups.
    Izhikevich EM; Gally JA; Edelman GM
    Cereb Cortex; 2004 Aug; 14(8):933-44. PubMed ID: 15142958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Representation of input structure in synaptic weights by spike-timing-dependent plasticity.
    Gilson M; Burkitt AN; Grayden DB; Thomas DA; van Hemmen JL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021912. PubMed ID: 20866842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimality model of unsupervised spike-timing-dependent plasticity: synaptic memory and weight distribution.
    Toyoizumi T; Pfister JP; Aihara K; Gerstner W
    Neural Comput; 2007 Mar; 19(3):639-71. PubMed ID: 17298228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spike-timing-dependent plasticity in balanced random networks.
    Morrison A; Aertsen A; Diesmann M
    Neural Comput; 2007 Jun; 19(6):1437-67. PubMed ID: 17444756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neurons tune to the earliest spikes through STDP.
    Guyonneau R; VanRullen R; Thorpe SJ
    Neural Comput; 2005 Apr; 17(4):859-79. PubMed ID: 15829092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discrete states of synaptic strength in a stochastic model of spike-timing-dependent plasticity.
    Elliott T
    Neural Comput; 2010 Jan; 22(1):244-72. PubMed ID: 19764870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational consequences of experimentally derived spike-time and weight dependent plasticity rules.
    Standage D; Jalil S; Trappenberg T
    Biol Cybern; 2007 Jun; 96(6):615-23. PubMed ID: 17468882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconciling the STDP and BCM models of synaptic plasticity in a spiking recurrent neural network.
    Bush D; Philippides A; Husbands P; O'Shea M
    Neural Comput; 2010 Aug; 22(8):2059-85. PubMed ID: 20438333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.
    Song S; Miller KD; Abbott LF
    Nat Neurosci; 2000 Sep; 3(9):919-26. PubMed ID: 10966623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian spiking neurons II: learning.
    Deneve S
    Neural Comput; 2008 Jan; 20(1):118-45. PubMed ID: 18045003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 61.