These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 19536631)

  • 1. Control of myotube contraction using electrical pulse stimulation for bio-actuator.
    Yamasaki K; Hayashi H; Nishiyama K; Kobayashi H; Uto S; Kondo H; Hashimoto S; Fujisato T
    J Artif Organs; 2009; 12(2):131-7. PubMed ID: 19536631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical stimulation of microengineered skeletal muscle tissue: Effect of stimulus parameters on myotube contractility and maturation.
    Banan Sadeghian R; Ebrahimi M; Salehi S
    J Tissue Eng Regen Med; 2018 Apr; 12(4):912-922. PubMed ID: 28622706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of type IV collagen on myogenic characteristics of IGF-I gene-engineered myoblasts.
    Ito A; Yamamoto M; Ikeda K; Sato M; Kawabe Y; Kamihira M
    J Biosci Bioeng; 2015 May; 119(5):596-603. PubMed ID: 25454061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of an acute muscle contraction model using cultured C2C12 myotubes.
    Manabe Y; Miyatake S; Takagi M; Nakamura M; Okeda A; Nakano T; Hirshman MF; Goodyear LJ; Fujii NL
    PLoS One; 2012; 7(12):e52592. PubMed ID: 23300713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micropatterning contractile C2C12 myotubes embedded in a fibrin gel.
    Nagamine K; Kawashima T; Ishibashi T; Kaji H; Kanzaki M; Nishizawa M
    Biotechnol Bioeng; 2010 Apr; 105(6):1161-7. PubMed ID: 20014142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel method for measuring active tension generation by C2C12 myotube using UV-crosslinked collagen film.
    Fujita H; Shimizu K; Nagamori E
    Biotechnol Bioeng; 2010 Jun; 106(3):482-9. PubMed ID: 20178119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of C2C12 Differentiation and Control of the Beating Dynamics of Contractile Cells for a Muscle-Driven Biosyncretic Crawler by Electrical Stimulation.
    Liu L; Zhang C; Wang W; Xi N; Wang Y
    Soft Robot; 2018 Dec; 5(6):748-760. PubMed ID: 30277855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically induced contraction of C2C12 myotubes cultured on a porous membrane-based substrate with muscle tissue-like stiffness.
    Kaji H; Ishibashi T; Nagamine K; Kanzaki M; Nishizawa M
    Biomaterials; 2010 Sep; 31(27):6981-6. PubMed ID: 20561677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optically controlled contraction of photosensitive skeletal muscle cells.
    Asano T; Ishizua T; Yawo H
    Biotechnol Bioeng; 2012 Jan; 109(1):199-204. PubMed ID: 21809334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced contractile force generation by artificial skeletal muscle tissues using IGF-I gene-engineered myoblast cells.
    Sato M; Ito A; Kawabe Y; Nagamori E; Kamihira M
    J Biosci Bioeng; 2011 Sep; 112(3):273-8. PubMed ID: 21646045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrically stimulated contractile activity-induced transcriptomic responses and metabolic remodeling in C
    Tamura Y; Kouzaki K; Kotani T; Nakazato K
    Am J Physiol Cell Physiol; 2020 Dec; 319(6):C1029-C1044. PubMed ID: 32936700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen nanofibre anisotropy induces myotube differentiation and acetylcholine receptor clustering.
    Kung FH; Sillitti D; Shrirao AB; Shreiber DI; Firestein BL
    J Tissue Eng Regen Med; 2018 Apr; 12(4):e2010-e2019. PubMed ID: 29266875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controllable bio-microactuator powered by muscle cells.
    Akiyama Y; Furukawa Y; Morishima K
    Conf Proc IEEE Eng Med Biol Soc; 2006; Suppl():6565-8. PubMed ID: 17959454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator.
    Fujita H; Van Dau T; Shimizu K; Hatsuda R; Sugiyama S; Nagamori E
    Biomed Microdevices; 2011 Feb; 13(1):123-9. PubMed ID: 20957437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical Pulse Stimulation of Primary Human Skeletal Muscle Cells.
    Nikolić N; Aas V
    Methods Mol Biol; 2019; 1889():17-24. PubMed ID: 30367406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical preconditioning enables electrophysiologic coupling of skeletal myoblast cells to myocardium.
    Neef K; Choi YH; Srinivasan SP; Treskes P; Cowan DB; Stamm C; Rubach M; Adelmann R; Wittwer T; Wahlers T
    J Thorac Cardiovasc Surg; 2012 Nov; 144(5):1176-1184.e1. PubMed ID: 22980065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrical stimulation increases hypertrophy and metabolic flux in tissue-engineered human skeletal muscle.
    Khodabukus A; Madden L; Prabhu NK; Koves TR; Jackman CP; Muoio DM; Bursac N
    Biomaterials; 2019 Apr; 198():259-269. PubMed ID: 30180985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and performance of an electrical stimulator for long-term contraction of cultured muscle cells.
    Marotta M; Bragós R; Gómez-Foix AM
    Biotechniques; 2004 Jan; 36(1):68-73. PubMed ID: 14740487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple micropatterning method for enhancing fusion efficiency and responsiveness to electrical stimulation of C2C12 myotubes.
    Takayama Y; Wagatsuma A; Hoshino T; Mabuchi K
    Biotechnol Prog; 2015; 31(1):220-5. PubMed ID: 25311428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes.
    Fujita H; Nedachi T; Kanzaki M
    Exp Cell Res; 2007 May; 313(9):1853-65. PubMed ID: 17425954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.