These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19536746)

  • 1. Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales.
    Weckhuysen BM
    Angew Chem Int Ed Engl; 2009; 48(27):4910-43. PubMed ID: 19536746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hard and soft X-ray microscopy and tomography in catalysis: bridging the different time and length scales.
    Grunwaldt JD; Schroer CG
    Chem Soc Rev; 2010 Dec; 39(12):4741-53. PubMed ID: 20978666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared and Raman imaging of heterogeneous catalysts.
    Stavitski E; Weckhuysen BM
    Chem Soc Rev; 2010 Dec; 39(12):4615-25. PubMed ID: 20938559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling physicochemical changes within catalyst bodies during preparation: new insights from invasive and noninvasive microspectroscopic studies.
    Espinosa-Alonso L; Beale AM; Weckhuysen BM
    Acc Chem Res; 2010 Sep; 43(9):1279-88. PubMed ID: 20604550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy.
    de Smit E; Swart I; Creemer JF; Hoveling GH; Gilles MK; Tyliszczak T; Kooyman PJ; Zandbergen HW; Morin C; Weckhuysen BM; de Groot FM
    Nature; 2008 Nov; 456(7219):222-5. PubMed ID: 19005551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting.
    Roeffaers MB; Sels BF; Uji-I H; De Schryver FC; Jacobs PA; De Vos DE; Hofkens J
    Nature; 2006 Feb; 439(7076):572-5. PubMed ID: 16452976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hard X-ray spectroscopic nano-imaging of hierarchical functional materials at work.
    Andrews JC; Weckhuysen BM
    Chemphyschem; 2013 Nov; 14(16):3655-66. PubMed ID: 24038941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic resonance imaging methods for in situ studies in heterogeneous catalysis.
    Lysova AA; Koptyug IV
    Chem Soc Rev; 2010 Dec; 39(12):4585-601. PubMed ID: 20936227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical imaging of catalytic solids with synchrotron radiation.
    Beale AM; Jacques SD; Weckhuysen BM
    Chem Soc Rev; 2010 Dec; 39(12):4656-72. PubMed ID: 20978688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Real-time Environmental High Resolution Electron Microscopy of Nanometer Size Novel Xerogel Catalysts for Hydrogenation Reactions in Nylon 6,6.
    Gai PL; Kourtakis K; Ziemecki S
    Microsc Microanal; 2000 Jul; 6(4):335-342. PubMed ID: 10898817
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-molecule fluorescence imaging of nanocatalytic processes.
    Chen P; Zhou X; Shen H; Andoy NM; Choudhary E; Han KS; Liu G; Meng W
    Chem Soc Rev; 2010 Dec; 39(12):4560-70. PubMed ID: 20886166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supported vanadium oxide in heterogeneous catalysis: elucidating the structure-activity relationship with spectroscopy.
    Muylaert I; Van Der Voort P
    Phys Chem Chem Phys; 2009 Apr; 11(16):2826-32. PubMed ID: 19421496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Phenomena of Proton Transfer from Catalytic Oxides.
    Schwarz JA
    J Colloid Interface Sci; 1999 Oct; 218(1):1-12. PubMed ID: 10489274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-time infrared detection of cyanide flip on silver-alumina NOx removal catalyst.
    Thibault-Starzyk F; Seguin E; Thomas S; Daturi M; Arnolds H; King DA
    Science; 2009 May; 324(5930):1048-51. PubMed ID: 19461000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoporous oxidic solids: the confluence of heterogeneous and homogeneous catalysis.
    Thomas JM; Hernandez-Garrido JC; Raja R; Bell RG
    Phys Chem Chem Phys; 2009 Apr; 11(16):2799-825. PubMed ID: 19421495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV-VIS-NIR spectroscopy and microscopy of heterogeneous catalysts.
    Schoonheydt RA
    Chem Soc Rev; 2010 Dec; 39(12):5051-66. PubMed ID: 21038052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining synchrotron-based X-ray techniques with vibrational spectroscopies for the in situ study of heterogeneous catalysts: a view from a bridge.
    Newton MA; van Beek W
    Chem Soc Rev; 2010 Dec; 39(12):4845-63. PubMed ID: 20967341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining in situ characterization methods in one set-up: looking with more eyes into the intricate chemistry of the synthesis and working of heterogeneous catalysts.
    Bentrup U
    Chem Soc Rev; 2010 Dec; 39(12):4718-30. PubMed ID: 20959916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule, single-particle fluorescence imaging of TiO2-based photocatalytic reactions.
    Tachikawa T; Majima T
    Chem Soc Rev; 2010 Dec; 39(12):4802-19. PubMed ID: 20824247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional shapes and spatial distributions of Pt and PtCr catalyst nanoparticles on carbon black.
    Gontard LC; Dunin-Borkowski RE; Ozkaya D
    J Microsc; 2008 Nov; 232(2):248-59. PubMed ID: 19017224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.