These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 19537730)

  • 1. Rapid authentication of olive oil adulteration by Raman spectrometry.
    Zou MQ; Zhang XF; Qi XH; Ma HL; Dong Y; Liu CW; Guo X; Wang H
    J Agric Food Chem; 2009 Jul; 57(14):6001-6. PubMed ID: 19537730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using Raman spectroscopy and an exponential equation approach to detect adulteration of olive oil with rapeseed and corn oil.
    de Lima TK; Musso M; Bertoldo Menezes D
    Food Chem; 2020 Dec; 333():127454. PubMed ID: 32679414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid quantitative assessment of the adulteration of virgin olive oils with hazelnut oils using Raman spectroscopy and chemometrics.
    López-Díez EC; Bianchi G; Goodacre R
    J Agric Food Chem; 2003 Oct; 51(21):6145-50. PubMed ID: 14518936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Chemlali extra-virgin olive oil adulteration mixed with soybean oil, corn oil, and sunflower oil by using GC and HPLC.
    Jabeur H; Zribi A; Makni J; Rebai A; Abdelhedi R; Bouaziz M
    J Agric Food Chem; 2014 May; 62(21):4893-904. PubMed ID: 24811341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Raman spectroscopy in the rapid detection of waste cooking oil.
    Jin H; Li H; Yin Z; Zhu Y; Lu A; Zhao D; Li C
    Food Chem; 2021 Nov; 362():130191. PubMed ID: 34082292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Research on detection method of adulterated olive oil by Raman spectroscopy and least squares support vector machine].
    Zhang YQ; Dong W; Zhang B; Wang XP
    Guang Pu Xue Yu Guang Pu Fen Xi; 2012 Jun; 32(6):1554-8. PubMed ID: 22870638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronous fluorescence spectroscopy: tool for monitoring thermally stressed edible oils.
    Poulli KI; Chantzos NV; Mousdis GA; Georgiou CA
    J Agric Food Chem; 2009 Sep; 57(18):8194-201. PubMed ID: 19722493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection and identification of extra virgin olive oil adulteration by GC-MS combined with chemometrics.
    Yang Y; Ferro MD; Cavaco I; Liang Y
    J Agric Food Chem; 2013 Apr; 61(15):3693-702. PubMed ID: 23528132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of edible oils by employing 31P and 1H NMR spectroscopy in combination with multivariate statistical analysis. A proposal for the detection of seed oil adulteration in virgin olive oils.
    Vigli G; Philippidis A; Spyros A; Dais P
    J Agric Food Chem; 2003 Sep; 51(19):5715-22. PubMed ID: 12952424
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid detection of copper chlorophyll in vegetable oils based on surface-enhanced Raman spectroscopy.
    Lian WN; Shiue J; Wang HH; Hong WC; Shih PH; Hsu CK; Huang CY; Hsing CR; Wei CM; Wang JK; Wang YL
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(5):627-34. PubMed ID: 25822695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput authentication of edible oils with benchtop Ultrafast 2D NMR.
    Gouilleux B; Marchand J; Charrier B; Remaud GS; Giraudeau P
    Food Chem; 2018 Apr; 244():153-158. PubMed ID: 29120763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Internal quality and shelf life of eggs coated with oils from different sources.
    Ryu KN; No HK; Prinyawiwatkul W
    J Food Sci; 2011; 76(5):S325-9. PubMed ID: 22417448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of vegetable oils: detailed compositional fingerprints derived from electrospray ionization fourier transform ion cyclotron resonance mass spectrometry.
    Wu Z; Rodgers RP; Marshall AG
    J Agric Food Chem; 2004 Aug; 52(17):5322-8. PubMed ID: 15315364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oil stability prediction by high-resolution (13)C nuclear magnetic resonance spectroscopy.
    Hidalgo FJ; Gómez G; Navarro JL; Zamora R
    J Agric Food Chem; 2002 Oct; 50(21):5825-31. PubMed ID: 12358445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of olive oil adulteration with waste cooking oil via Raman spectroscopy combined with iPLS and SiPLS.
    Li Y; Fang T; Zhu S; Huang F; Chen Z; Wang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jan; 189():37-43. PubMed ID: 28787625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel qPCR systems for olive (Olea europaea L.) authentication in oils and food.
    Ramos-Gómez S; Busto MD; Albillos SM; Ortega N
    Food Chem; 2016 Mar; 194():447-54. PubMed ID: 26471578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of the presence of hazelnut oil in olive oil by FT-raman and FT-MIR spectroscopy.
    Baeten V; Fernández Pierna JA; Dardenne P; Meurens M; García-González DL; Aparicio-Ruiz R
    J Agric Food Chem; 2005 Aug; 53(16):6201-6. PubMed ID: 16076094
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Migrated phthalate levels into edible oils.
    Sungur S; Okur R; Turgut FH; Ustun I; Gokce C
    Food Addit Contam Part B Surveill; 2015; 8(3):190-4. PubMed ID: 25896944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of olive oil and seed oil triglycerides by capillary gas chromatography as a tool for the detection of the adulteration of olive oil.
    Andrikopoulos NK; Giannakis IG; Tzamtzis V
    J Chromatogr Sci; 2001 Apr; 39(4):137-45. PubMed ID: 11318065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospray ionization mass spectrometry and partial least squares discriminant analysis applied to the quality control of olive oil.
    Alves JO; Botelho BG; Sena MM; Augusti R
    J Mass Spectrom; 2013 Oct; 48(10):1109-15. PubMed ID: 24130014
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.