These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 19537785)

  • 1. Squalene versus ergosterol formation using Saccharomyces cerevisiae: combined effect of oxygen supply, inoculum size, and fermentation time on yield and selectivity of the bioprocess.
    Mantzouridou F; Naziri E; Tsimidou MZ
    J Agric Food Chem; 2009 Jul; 57(14):6189-98. PubMed ID: 19537785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fine measurement of ergosterol requirements for growth of Saccharomyces cerevisiae during alcoholic fermentation.
    Deytieux C; Mussard L; Biron MJ; Salmon JM
    Appl Microbiol Biotechnol; 2005 Aug; 68(2):266-71. PubMed ID: 15666147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observations on squalene accumulation in Saccharomyces cerevisiae due to the manipulation of HMG2 and ERG6.
    Mantzouridou F; Tsimidou MZ
    FEMS Yeast Res; 2010 Sep; 10(6):699-707. PubMed ID: 20550581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae.
    He X; Guo X; Liu N; Zhang B
    Appl Microbiol Biotechnol; 2007 May; 75(1):55-60. PubMed ID: 17225097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-cell-density cultivation for co-production of ergosterol and reduced glutathione by Saccharomyces cerevisiae.
    Shang F; Wang Z; Tan T
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1233-40. PubMed ID: 18071647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-cell-density fermentation for ergosterol production by Saccharomyces cerevisiae.
    Shang F; Wen S; Wang X; Tan T
    J Biosci Bioeng; 2006 Jan; 101(1):38-41. PubMed ID: 16503289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced squalene production by wild-type Saccharomyces cerevisiae strains using safe chemical means.
    Naziri E; Mantzouridou F; Tsimidou MZ
    J Agric Food Chem; 2011 Sep; 59(18):9980-9. PubMed ID: 21806066
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rate-limiting steps in the Saccharomyces cerevisiae ergosterol pathway: towards improved ergosta-5,7-dien-3β-ol accumulation by metabolic engineering.
    Ma BX; Ke X; Tang XL; Zheng RC; Zheng YG
    World J Microbiol Biotechnol; 2018 Mar; 34(4):55. PubMed ID: 29594560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of skin maceration and oxygen on anaerobic fermentation of grape musts with high sugar content.
    Valero E; Millán MC; Ortega JM
    Microbios; 2001; 106(414):111-27. PubMed ID: 11506062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Improving ergosterol production from molasses by Saccharomyces cerevisiae].
    Wang S; Guo X; He X; Zhang B
    Sheng Wu Gong Cheng Xue Bao; 2013 Nov; 29(11):1676-80. PubMed ID: 24701833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Enhanced ergosterol production by recombinant Saccharomyces cerevisiae 1190 harboring Vitreoscilla hemoglobin gene (vgb)].
    Fan N; Li Y; Zhou Q; Chen GQ
    Sheng Wu Gong Cheng Xue Bao; 2004 May; 20(3):441-4. PubMed ID: 15971621
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid nutrition of Saccharomyces cerevisiae in winemaking.
    Belviso S; Bardi L; Bartolini AB; Marzona M
    Can J Microbiol; 2004 Sep; 50(9):669-74. PubMed ID: 15644919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of oxygen in yeast metabolism during high cell density brewery fermentations.
    Verbelen PJ; Saerens SM; Van Mulders SE; Delvaux F; Delvaux FR
    Appl Microbiol Biotechnol; 2009 Apr; 82(6):1143-56. PubMed ID: 19263049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined overexpression of genes of the ergosterol biosynthetic pathway leads to accumulation of sterols in Saccharomyces cerevisiae.
    Veen M; Stahl U; Lang C
    FEMS Yeast Res; 2003 Oct; 4(1):87-95. PubMed ID: 14554200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-level recombinant production of squalene using selected Saccharomyces cerevisiae strains.
    Han JY; Seo SH; Song JM; Lee H; Choi ES
    J Ind Microbiol Biotechnol; 2018 Apr; 45(4):239-251. PubMed ID: 29396745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of nitrogen source for enhanced production of squalene from thraustochytrid Aurantiochytrium sp.
    Chen G; Fan KW; Lu FP; Li Q; Aki T; Chen F; Jiang Y
    N Biotechnol; 2010 Sep; 27(4):382-9. PubMed ID: 20412873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards the design of an optimal strategy for the production of ergosterol from Saccharomyces cerevisiae yeasts.
    Náhlík J; Hrnčiřík P; Mareš J; Rychtera M; Kent CA
    Biotechnol Prog; 2017 May; 33(3):838-848. PubMed ID: 28127893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repeated-batch fermentation using flocculent hybrid, Saccharomyces cerevisiae CHFY0321 for efficient production of bioethanol.
    Choi GW; Kang HW; Moon SK
    Appl Microbiol Biotechnol; 2009 Aug; 84(2):261-9. PubMed ID: 19319524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of culture conditions on glutathione production by Saccharomyces cerevisiae.
    Santos LO; Gonzales TA; Ubeda BT; Monte Alegre R
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):763-9. PubMed ID: 17926030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of squalene-accumulating Saccharomyces cerevisiae mutants by gene disruption through homologous recombination.
    Kamimura N; Hidaka M; Masaki H; Uozumi T
    Appl Microbiol Biotechnol; 1994 Nov; 42(2-3):353-7. PubMed ID: 7765777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.