These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 19537968)
1. A transcriptome analysis of the Aedes aegypti vitellogenic fat body. Feitosa FM; Calvo E; Merino EF; Durham AM; James AA; de Bianchi AG; Marinotti O; Capurro ML J Insect Sci; 2006; 6():1-26. PubMed ID: 19537968 [TBL] [Abstract][Full Text] [Related]
2. The fat body transcriptomes of the yellow fever mosquito Aedes aegypti, pre- and post- blood meal. Price DP; Nagarajan V; Churbanov A; Houde P; Milligan B; Drake LL; Gustafson JE; Hansen IA PLoS One; 2011; 6(7):e22573. PubMed ID: 21818341 [TBL] [Abstract][Full Text] [Related]
3. Transcriptome analysis of Aedes aegypti Aag2 cells in response to dengue virus-2 infection. Li MJ; Lan CJ; Gao HT; Xing D; Gu ZY; Su D; Zhao TY; Yang HY; Li CX Parasit Vectors; 2020 Aug; 13(1):421. PubMed ID: 32807211 [TBL] [Abstract][Full Text] [Related]
4. Insights into the transcriptome of oenocytes from Aedes aegypti pupae. Martins GF; Ramalho-Ortigão JM; Lobo NF; Severson DW; McDowell MA; Pimenta PF Mem Inst Oswaldo Cruz; 2011 May; 106(3):308-15. PubMed ID: 21655818 [TBL] [Abstract][Full Text] [Related]
5. Fat Body Organ Culture System in Aedes Aegypti, a Vector of Zika Virus. Chung HN; Rodriguez SD; Carpenter VK; Vulcan J; Bailey CD; Nageswara-Rao M; Li Y; Attardo GM; Hansen IA J Vis Exp; 2017 Aug; (126):. PubMed ID: 28872112 [TBL] [Abstract][Full Text] [Related]
6. Expression of the early-late gene encoding the nuclear receptor HR3 suggests its involvement in regulating the vitellogenic response to ecdysone in the adult mosquito. Kapitskaya MZ; Li C; Miura K; Segraves W; Raikhel AS Mol Cell Endocrinol; 2000 Feb; 160(1-2):25-37. PubMed ID: 10715536 [TBL] [Abstract][Full Text] [Related]
7. Transcriptome analysis of Aedes aegypti transgenic mosquitoes with altered immunity. Zou Z; Souza-Neto J; Xi Z; Kokoza V; Shin SW; Dimopoulos G; Raikhel A PLoS Pathog; 2011 Nov; 7(11):e1002394. PubMed ID: 22114564 [TBL] [Abstract][Full Text] [Related]
8. Transcriptome-wide microRNA and target dynamics in the fat body during the gonadotrophic cycle of Zhang X; Aksoy E; Girke T; Raikhel AS; Karginov FV Proc Natl Acad Sci U S A; 2017 Mar; 114(10):E1895-E1903. PubMed ID: 28223504 [TBL] [Abstract][Full Text] [Related]
9. Lipophorin as a yolk protein precursor in the mosquito, Aedes aegypti. Sun J; Hiraoka T; Dittmer NT; Cho KH; Raikhel AS Insect Biochem Mol Biol; 2000 Dec; 30(12):1161-71. PubMed ID: 11044662 [TBL] [Abstract][Full Text] [Related]
10. SLC7 amino acid transporters of the yellow fever mosquito Aedes aegypti and their role in fat body TOR signaling and reproduction. Carpenter VK; Drake LL; Aguirre SE; Price DP; Rodriguez SD; Hansen IA J Insect Physiol; 2012 Apr; 58(4):513-22. PubMed ID: 22266018 [TBL] [Abstract][Full Text] [Related]
11. Aedes (Stegomyia) aegypti in the continental United States: a vector at the cool margin of its geographic range. Eisen L; Moore CG J Med Entomol; 2013 May; 50(3):467-78. PubMed ID: 23802440 [TBL] [Abstract][Full Text] [Related]
12. Increased Akt signaling in the mosquito fat body increases adult survivorship. Arik AJ; Hun LV; Quicke K; Piatt M; Ziegler R; Scaraffia PY; Badgandi H; Riehle MA FASEB J; 2015 Apr; 29(4):1404-13. PubMed ID: 25550465 [TBL] [Abstract][Full Text] [Related]
13. A novel GATA factor transcriptionally represses yolk protein precursor genes in the mosquito Aedes aegypti via interaction with the CtBP corepressor. Martín D; Piulachs MD; Raikhel AS Mol Cell Biol; 2001 Jan; 21(1):164-74. PubMed ID: 11113191 [TBL] [Abstract][Full Text] [Related]
14. Functional characterization of a serine protease inhibitor modulated in the infection of the Aedes aegypti with dengue virus. Soares TS; Rodriguez Gonzalez BL; Torquato RJS; Lemos FJA; Costa-da-Silva AL; Capurro Guimarães ML; Tanaka AS Biochimie; 2018 Jan; 144():160-168. PubMed ID: 29133118 [TBL] [Abstract][Full Text] [Related]
15. Transcriptome analysis of Aedes aegypti in response to mono-infections and co-infections of dengue virus-2 and chikungunya virus. Shrinet J; Srivastava P; Sunil S Biochem Biophys Res Commun; 2017 Oct; 492(4):617-623. PubMed ID: 28161634 [TBL] [Abstract][Full Text] [Related]
16. Transcriptomic analyses of Aedes aegypti cultured cells and ex vivo midguts in response to an excess or deficiency of heme: a quest for transcriptionally-regulated heme transporters. Eggleston H; Adelman ZN BMC Genomics; 2020 Aug; 21(1):604. PubMed ID: 32867680 [TBL] [Abstract][Full Text] [Related]
17. Analysis of a ribosomal DNA intergenic spacer region from the yellow fever mosquito, Aedes aegypti. Wu CC; Fallon AM Insect Mol Biol; 1998 Feb; 7(1):19-29. PubMed ID: 9459426 [TBL] [Abstract][Full Text] [Related]
18. Two-dimensional electrophoretic analysis of Aedes aegypti mosquito fat body proteins during a gonotropic cycle. Shih KM; Fallon AM Am J Trop Med Hyg; 2001 Jul; 65(1):42-6. PubMed ID: 11504406 [TBL] [Abstract][Full Text] [Related]
19. An annotated catalogue of salivary gland transcripts in the adult female mosquito, Aedes aegypti. Ribeiro JM; Arcà B; Lombardo F; Calvo E; Phan VM; Chandra PK; Wikel SK BMC Genomics; 2007 Jan; 8():6. PubMed ID: 17204158 [TBL] [Abstract][Full Text] [Related]
20. Indirect control of yolk protein genes by 20-hydroxyecdysone in the fat body of the mosquito, Aedes aegypti. Deitsch KW; Chen JS; Raikhel AS Insect Biochem Mol Biol; 1995 Apr; 25(4):449-54. PubMed ID: 7742832 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]