These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 19538006)

  • 1. Insulin-loaded poly(acrylic acid)-cysteine nanoparticles: stability studies towards digestive enzymes of the intestine.
    Perera G; Greindl M; Palmberger TF; Bernkop-Schnürch A
    Drug Deliv; 2009 Jul; 16(5):254-60. PubMed ID: 19538006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thiolated Eudragit nanoparticles for oral insulin delivery: preparation, characterization and in vivo evaluation.
    Zhang Y; Wu X; Meng L; Zhang Y; Ai R; Qi N; He H; Xu H; Tang X
    Int J Pharm; 2012 Oct; 436(1-2):341-50. PubMed ID: 22766443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oral peptide drug delivery: polymer-inhibitor conjugates protecting insulin from enzymatic degradation in vitro.
    Marschütz MK; Bernkop-Schnürch A
    Biomaterials; 2000 Jul; 21(14):1499-507. PubMed ID: 10872779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of polymers ratio on insulin-loaded nanoparticles based on poly-epsilon-caprolactone and Eudragit RS for oral administration.
    Socha M; Sapin A; Damgé C; Maincent P
    Drug Deliv; 2009 Nov; 16(8):430-6. PubMed ID: 19839787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oral peptide delivery: in-vitro evaluation of thiolated alginate/poly(acrylic acid) microparticles.
    Greimel A; Werle M; Bernkop-Schnürch A
    J Pharm Pharmacol; 2007 Sep; 59(9):1191-8. PubMed ID: 17883889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HP55-coated capsule containing PLGA/RS nanoparticles for oral delivery of insulin.
    Wu ZM; Zhou L; Guo XD; Jiang W; Ling L; Qian Y; Luo KQ; Zhang LJ
    Int J Pharm; 2012 Apr; 425(1-2):1-8. PubMed ID: 22248666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin.
    Zhang N; Ping Q; Huang G; Xu W; Cheng Y; Han X
    Int J Pharm; 2006 Dec; 327(1-2):153-9. PubMed ID: 16935443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of polymer architecture on the protective effect of novel comb shaped amphiphilic poly(allylamine) against in vitro enzymatic degradation of insulin--towards oral insulin delivery.
    Thompson CJ; Tetley L; Cheng WP
    Int J Pharm; 2010 Jan; 383(1-2):216-27. PubMed ID: 19766178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitation of active pancreatic endopeptidases in the intestinal contents of germfree and conventional rats.
    Genell S; Gustafsson BE; Ohlsson K
    Scand J Gastroenterol; 1976; 11(8):757-62. PubMed ID: 1006149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle strategies for the oral delivery of insulin.
    Damgé C; Reis CP; Maincent P
    Expert Opin Drug Deliv; 2008 Jan; 5(1):45-68. PubMed ID: 18095928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery.
    Makhlof A; Tozuka Y; Takeuchi H
    Eur J Pharm Sci; 2011 Apr; 42(5):445-51. PubMed ID: 21182939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the design of in situ forming biodegradable parenteral depot systems based on insulin loaded dialkylaminoalkyl-amine-poly(vinyl alcohol)-g-poly(lactide-co-glycolide) nanoparticles.
    Packhaeuser CB; Kissel T
    J Control Release; 2007 Nov; 123(2):131-40. PubMed ID: 17854938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly and in vitro characterization of thiomeric nanoparticles.
    Deutel B; Laffleur F; Thaurer M; Thaler M; Bernkop-Schnürch A
    Drug Dev Ind Pharm; 2016; 42(5):730-6. PubMed ID: 27019194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanosized insulin-complexes based on biodegradable amine-modified graft polyesters poly[vinyl-3-(diethylamino)-propylcarbamate-co-(vinyl acetate)-co-(vinyl alcohol)]-graft-poly(L-lactic acid): protection against enzymatic degradation, interaction with Caco-2 cell monolayers, peptide transport and cytotoxicity.
    Simon M; Behrens I; Dailey LA; Wittmar M; Kissel T
    Eur J Pharm Biopharm; 2007 May; 66(2):165-72. PubMed ID: 17150341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of polyacrylic polymers on the degradation of insulin and peptide drugs by chymotrypsin and trypsin.
    Bai JP; Chang LL; Guo JH
    J Pharm Pharmacol; 1996 Jan; 48(1):17-21. PubMed ID: 8722488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrolysis of polyesters by serine proteases.
    Lim HA; Raku T; Tokiwa Y
    Biotechnol Lett; 2005 Apr; 27(7):459-64. PubMed ID: 15928850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silica nanoparticle coated liposomes: a new type of hybrid nanocapsule for proteins.
    Mohanraj VJ; Barnes TJ; Prestidge CA
    Int J Pharm; 2010 Jun; 392(1-2):285-93. PubMed ID: 20363300
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of N,O-carboxymethyl chitosan nanoparticles as an insulin carrier.
    Lin CC; Lin CW
    Drug Deliv; 2009 Nov; 16(8):458-64. PubMed ID: 19839790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions among proteins and hydrophobically modified polyelectrolytes.
    Bromberg LE
    J Pharm Pharmacol; 2001 Apr; 53(4):541-7. PubMed ID: 11341372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and characterization of nanoparticles of glibenclamide by solvent displacement method.
    Dora CP; Singh SK; Kumar S; Datusalia AK; Deep A
    Acta Pol Pharm; 2010; 67(3):283-90. PubMed ID: 20524431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.