These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 19538922)

  • 1. Bioaminergic neuromodulation of respiratory rhythm in vitro.
    Viemari JC; Tryba AK
    Respir Physiol Neurobiol; 2009 Aug; 168(1-2):69-75. PubMed ID: 19538922
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain monoaminergic neurons and ventilatory control in vertebrates.
    Gargaglioni LH; Bícegoa KC; Branco LG
    Respir Physiol Neurobiol; 2008 Dec; 164(1-2):112-22. PubMed ID: 18550453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A matter of focus: monoaminergic modulation of stimulus coding in mammalian sensory networks.
    Hurley LM; Devilbiss DM; Waterhouse BD
    Curr Opin Neurobiol; 2004 Aug; 14(4):488-95. PubMed ID: 15321070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Significance of neurotransmitters and neuromodulators in regulating respiration. A. Central aminergic neurons].
    Karkos J
    Fortschr Neurol Psychiatr; 1988 Mar; 56(3):69-96. PubMed ID: 2896143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal mechanisms of respiratory rhythm generation: an approach using in vitro preparation.
    Onimaru H; Arata A; Homma I
    Jpn J Physiol; 1997 Oct; 47(5):385-403. PubMed ID: 9504127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chapter 3--networks within networks: the neuronal control of breathing.
    Garcia AJ; Zanella S; Koch H; Doi A; Ramirez JM
    Prog Brain Res; 2011; 188():31-50. PubMed ID: 21333801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cellular, synaptic, network, and modulatory mechanisms involved in rhythm generation.
    Calabrese RL
    Curr Opin Neurobiol; 1998 Dec; 8(6):710-7. PubMed ID: 9914244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ret deficiency in mice impairs the development of A5 and A6 neurons and the functional maturation of the respiratory rhythm.
    Viemari JC; Maussion G; Bévengut M; Burnet H; Pequignot JM; Népote V; Pachnis V; Simonneau M; Hilaire G
    Eur J Neurosci; 2005 Nov; 22(10):2403-12. PubMed ID: 16307583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory rhythm generation and synaptic inhibition of expiratory neurons in pre-Bötzinger complex: differential roles of glycinergic and GABAergic neural transmission.
    Shao XM; Feldman JL
    J Neurophysiol; 1997 Apr; 77(4):1853-60. PubMed ID: 9114241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glycinergic interneurons in the respiratory network of the rhythmic slice preparation.
    Winter SM; Fresemann J; Schnell C; Oku Y; Hirrlinger J; Hülsmann S
    Adv Exp Med Biol; 2010; 669():97-100. PubMed ID: 20217329
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raphé neurons stimulate respiratory circuit activity by multiple mechanisms via endogenously released serotonin and substance P.
    Ptak K; Yamanishi T; Aungst J; Milescu LS; Zhang R; Richerson GB; Smith JC
    J Neurosci; 2009 Mar; 29(12):3720-37. PubMed ID: 19321769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms Underlying Adaptation of Respiratory Network Activity to Modulatory Stimuli in the Mouse Embryo.
    Chevalier M; De Sa R; Cardoit L; Thoby-Brisson M
    Neural Plast; 2016; 2016():3905257. PubMed ID: 27239348
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phox2a gene, A6 neurons, and noradrenaline are essential for development of normal respiratory rhythm in mice.
    Viemari JC; Bévengut M; Burnet H; Coulon P; Pequignot JM; Tiveron MC; Hilaire G
    J Neurosci; 2004 Jan; 24(4):928-37. PubMed ID: 14749437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Persistent Na+ and K+-dominated leak currents contribute to respiratory rhythm generation in the pre-Bötzinger complex in vitro.
    Koizumi H; Smith JC
    J Neurosci; 2008 Feb; 28(7):1773-85. PubMed ID: 18272697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Property-Based Practical Applications and Solutions of Genetically Encoded Acetylcholine and Monoamine Sensors.
    Chen J; Cho KE; Skwarzynska D; Clancy S; Conley NJ; Clinton SM; Li X; Lin L; Zhu JJ
    J Neurosci; 2021 Mar; 41(11):2318-2328. PubMed ID: 33627325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monoamines stimulate sex reversal in the saddleback wrasse.
    Larson ET; Norris DO; Gordon Grau E; Summers CH
    Gen Comp Endocrinol; 2003 Feb; 130(3):289-98. PubMed ID: 12606271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal network properties underlying the generation of gasping.
    Peña F
    Clin Exp Pharmacol Physiol; 2009 Dec; 36(12):1218-28. PubMed ID: 19793109
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuromodulation and the orchestration of the respiratory rhythm.
    Doi A; Ramirez JM
    Respir Physiol Neurobiol; 2008 Dec; 164(1-2):96-104. PubMed ID: 18602029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional Interactions between Mammalian Respiratory Rhythmogenic and Premotor Circuitry.
    Song H; Hayes JA; Vann NC; Wang X; LaMar MD; Del Negro CA
    J Neurosci; 2016 Jul; 36(27):7223-33. PubMed ID: 27383596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network reconfiguration and neuronal plasticity in rhythm-generating networks.
    Koch H; Garcia AJ; Ramirez JM
    Integr Comp Biol; 2011 Dec; 51(6):856-68. PubMed ID: 21856733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.