These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 19539030)

  • 41. Subnuclear localization and dynamics of the Pre-mRNA 3' end processing factor mammalian cleavage factor I 68-kDa subunit.
    Cardinale S; Cisterna B; Bonetti P; Aringhieri C; Biggiogera M; Barabino SM
    Mol Biol Cell; 2007 Apr; 18(4):1282-92. PubMed ID: 17267687
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The N-terminal dimerization is required for TDP-43 splicing activity.
    Jiang LL; Xue W; Hong JY; Zhang JT; Li MJ; Yu SN; He JH; Hu HY
    Sci Rep; 2017 Jul; 7(1):6196. PubMed ID: 28733604
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intranuclear sphingomyelin is associated with transcriptionally active chromatin and plays a role in nuclear integrity.
    Scassellati C; Albi E; Cmarko D; Tiberi C; Cmarkova J; Bouchet-Marquis C; Verschure PJ; Driel Rv; Magni MV; Fakan S
    Biol Cell; 2010 Apr; 102(6):361-75. PubMed ID: 20095965
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hyperphosphorylated C-terminal repeat domain-associating proteins in the nuclear proteome link transcription to DNA/chromatin modification and RNA processing.
    Carty SM; Greenleaf AL
    Mol Cell Proteomics; 2002 Aug; 1(8):598-610. PubMed ID: 12376575
    [TBL] [Abstract][Full Text] [Related]  

  • 45. InSAC: A novel sub-nuclear body essential for Interleukin-6 and -10 RNA processing and stability.
    Lee S; Park B
    BMB Rep; 2015 May; 48(5):239-40. PubMed ID: 25845943
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Targeting proteins to RNA transcription and processing sites within the nucleus.
    Sánchez-Hernández N; Prieto-Sánchez S; Moreno-Castro C; Muñoz-Cobo JP; El Yousfi Y; Boyero-Corral S; Suñé-Pou M; Hernández-Munain C; Suñé C
    Int J Biochem Cell Biol; 2017 Oct; 91(Pt B):194-202. PubMed ID: 28600144
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evidence that all SC-35 domains contain mRNAs and that transcripts can be structurally constrained within these domains.
    Shopland LS; Johnson CV; Lawrence JB
    J Struct Biol; 2002; 140(1-3):131-9. PubMed ID: 12490161
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Compartmentalization of specific pre-mRNA metabolism: an emerging view.
    Moen PT; Smith KP; Lawrence JB
    Hum Mol Genet; 1995; 4 Spec No():1779-89. PubMed ID: 8541878
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification of a subnuclear body involved in sequence-specific cytokine RNA processing.
    Lee S; Lee TA; Lee E; Kang S; Park A; Kim SW; Park HJ; Yoon JH; Ha SJ; Park T; Lee JS; Cheon JH; Park B
    Nat Commun; 2015 Jan; 6():5791. PubMed ID: 25557830
    [TBL] [Abstract][Full Text] [Related]  

  • 50. TDP-43 and NEAT long non-coding RNA: Roles in neurodegenerative disease.
    Sekar D; Tusubira D; Ross K
    Front Cell Neurosci; 2022; 16():954912. PubMed ID: 36385948
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The path of transcripts from extra-nucleolar synthetic sites to nuclear pores: transcripts in transit are concentrated in discrete structures containing SR proteins.
    Iborra FJ; Jackson DA; Cook PR
    J Cell Sci; 1998 Aug; 111 ( Pt 15)():2269-82. PubMed ID: 9664048
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Considering nuclear compartmentalization in the light of nuclear dynamics.
    Chubb JR; Bickmore WA
    Cell; 2003 Feb; 112(4):403-6. PubMed ID: 12600306
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Visualization of transcription sites at the electron microscope.
    Trentani A; Testillano PS; Risueño MC; Biggiogera M
    Eur J Histochem; 2003; 47(3):195-200. PubMed ID: 14514409
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Regulatory Role of RNA Metabolism Regulator TDP-43 in Human Cancer.
    Ma X; Ying Y; Xie H; Liu X; Wang X; Li J
    Front Oncol; 2021; 11():755096. PubMed ID: 34778070
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Perichromatin fibrils are in situ forms of nascent transcripts.
    Fakan S
    Trends Cell Biol; 1994 Mar; 4(3):86-90. PubMed ID: 14731598
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cell senescence, loss of splicing, and lipid metabolism in TDP-43-related neurodegenerative processes.
    Torres P; Pamplona R; Portero-Otin M
    Neural Regen Res; 2023 Aug; 18(8):1725-1726. PubMed ID: 36751794
    [No Abstract]   [Full Text] [Related]  

  • 57. HSP70 chaperones RNA-free TDP-43 into anisotropic intranuclear liquid spherical shells.
    Yu H; Lu S; Gasior K; Singh D; Vazquez-Sanchez S; Tapia O; Toprani D; Beccari MS; Yates JR; Da Cruz S; Newby JM; Lafarga M; Gladfelter AS; Villa E; Cleveland DW
    Science; 2021 Feb; 371(6529):. PubMed ID: 33335017
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The debated toxic role of aggregated TDP-43 in amyotrophic lateral sclerosis: a resolution in sight?
    Hergesheimer RC; Chami AA; de Assis DR; Vourc'h P; Andres CR; Corcia P; Lanznaster D; Blasco H
    Brain; 2019 May; 142(5):1176-1194. PubMed ID: 30938443
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis.
    Prasad A; Bharathi V; Sivalingam V; Girdhar A; Patel BK
    Front Mol Neurosci; 2019; 12():25. PubMed ID: 30837838
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Frontotemporal-TDP and LATE Neurocognitive Disorders: A Pathophysiological and Genetic Approach.
    Ortiz GG; Ramírez-Jirano J; Arizaga RL; Delgado-Lara DLC; Torres-Sánchez ED
    Brain Sci; 2023 Oct; 13(10):. PubMed ID: 37891841
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.