BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 19539301)

  • 1. In situ time-resolved XAFS analysis of silver particle formation by photoreduction in polymer solutions.
    Harada M; Inada Y; Nomura M
    J Colloid Interface Sci; 2009 Sep; 337(2):427-38. PubMed ID: 19539301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ time-resolved XAFS studies of metal particle formation by photoreduction in polymer solutions.
    Harada M; Inada Y
    Langmuir; 2009 Jun; 25(11):6049-61. PubMed ID: 19408898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ XAFS studies of Au particle formation by photoreduction in polymer solutions.
    Harada M; Einaga H
    Langmuir; 2007 Jun; 23(12):6536-43. PubMed ID: 17497903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of water/AOT/benzene microemulsions during photoreduction to produce silver particles.
    Harada M; Saijo K; Sakamoto N; Ito K
    J Colloid Interface Sci; 2010 Mar; 343(2):423-32. PubMed ID: 20080242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation mechanism of Pt particles by photoreduction of Pt ions in polymer solutions.
    Harada M; Einaga H
    Langmuir; 2006 Feb; 22(5):2371-7. PubMed ID: 16489831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of silver particle formation during photoreduction using in situ time-resolved SAXS analysis.
    Harada M; Katagiri E
    Langmuir; 2010 Dec; 26(23):17896-905. PubMed ID: 21047110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photochemical synthesis of silver particles in Tween 20/water/ionic liquid microemulsions.
    Harada M; Kimura Y; Saijo K; Ogawa T; Isoda S
    J Colloid Interface Sci; 2009 Nov; 339(2):373-81. PubMed ID: 19733360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of ruthenium particles by photoreduction in polymer solutions.
    Harada M; Takahashi S
    J Colloid Interface Sci; 2008 Sep; 325(1):1-6. PubMed ID: 18571190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photochemical synthesis of silver particles using water-in-ionic liquid microemulsions in high-pressure CO2.
    Harada M; Kawasaki C; Saijo K; Demizu M; Kimura Y
    J Colloid Interface Sci; 2010 Mar; 343(2):537-45. PubMed ID: 20060982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ time-resolved XAFS study on the formation mechanism of Cu nanoparticles using poly(N-vinyl-2-pyrrolidone) as a capping agent.
    Nishimura S; Takagaki A; Maenosono S; Ebitani K
    Langmuir; 2010 Mar; 26(6):4473-9. PubMed ID: 20039605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of Pt/Rh bimetallic colloidal particles in polymer solutions using borohydride-reduction.
    Harada M; Einaga H
    J Colloid Interface Sci; 2007 Apr; 308(2):568-72. PubMed ID: 17291519
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of the organization of water-in-ionic liquid microemulsions on the size of silver particles during photoreduction.
    Harada M; Yamada M; Kimura Y; Saijo K
    J Colloid Interface Sci; 2013 Sep; 406():94-104. PubMed ID: 23791230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion of gold ions and gold particles during photoreduction processes probed by the transient grating method.
    Harada M; Okamoto K; Terazima M
    J Colloid Interface Sci; 2009 Apr; 332(2):373-81. PubMed ID: 19150075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleation and aggregative growth process of platinum nanoparticles studied by in situ quick XAFS spectroscopy.
    Harada M; Kamigaito Y
    Langmuir; 2012 Feb; 28(5):2415-28. PubMed ID: 22200585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the formation process of photodeposited Rh nanoparticles on TiO2 by in situ time-resolved energy-dispersive XAFS analysis.
    Ohyama J; Teramura K; Okuoka S; Yamazoe S; Kato K; Shishido T; Tanaka T
    Langmuir; 2010 Sep; 26(17):13907-12. PubMed ID: 20669911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monitoring early stages of silver particle formation in a polymer solution by in situ and time resolved small angle X-ray scattering.
    Campi G; Mari A; Amenitsch H; Pifferi A; Cannas C; Suber L
    Nanoscale; 2010 Nov; 2(11):2447-55. PubMed ID: 20938556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size-controlled dissolution of organic-coated silver nanoparticles.
    Ma R; Levard C; Marinakos SM; Cheng Y; Liu J; Michel FM; Brown GE; Lowry GV
    Environ Sci Technol; 2012 Jan; 46(2):752-9. PubMed ID: 22142034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Green synthesis and characterization of polymer-stabilized silver nanoparticles.
    Medina-Ramirez I; Bashir S; Luo Z; Liu JL
    Colloids Surf B Biointerfaces; 2009 Oct; 73(2):185-91. PubMed ID: 19539451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation, characterization, and surface modification of silver nanoparticles in formamide.
    Sarkar A; Kapoor S; Mukherjee T
    J Phys Chem B; 2005 Apr; 109(16):7698-704. PubMed ID: 16851894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver nanoparticles embedded polymer sorbent for preconcentration of uranium from bio-aggressive aqueous media.
    Das S; Pandey AK; Athawale AA; Subramanian M; Seshagiri TK; Khanna PK; Manchanda VK
    J Hazard Mater; 2011 Feb; 186(2-3):2051-9. PubMed ID: 21269770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.