These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
857 related articles for article (PubMed ID: 19539369)
1. Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Prabhakaran MP; Venugopal JR; Ramakrishna S Biomaterials; 2009 Oct; 30(28):4996-5003. PubMed ID: 19539369 [TBL] [Abstract][Full Text] [Related]
2. Stem cell differentiation to epidermal lineages on electrospun nanofibrous substrates for skin tissue engineering. Jin G; Prabhakaran MP; Ramakrishna S Acta Biomater; 2011 Aug; 7(8):3113-22. PubMed ID: 21550425 [TBL] [Abstract][Full Text] [Related]
3. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Ramakrishna S Biomaterials; 2008 Dec; 29(34):4532-9. PubMed ID: 18757094 [TBL] [Abstract][Full Text] [Related]
4. Biochemical and molecular characterization of hepatocyte-like cells derived from human bone marrow mesenchymal stem cells on a novel three-dimensional biocompatible nanofibrous scaffold. Kazemnejad S; Allameh A; Soleimani M; Gharehbaghian A; Mohammadi Y; Amirizadeh N; Jazayery M J Gastroenterol Hepatol; 2009 Feb; 24(2):278-87. PubMed ID: 18752558 [TBL] [Abstract][Full Text] [Related]
5. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Ramakrishna S Tissue Eng Part A; 2009 Nov; 15(11):3605-19. PubMed ID: 19496678 [TBL] [Abstract][Full Text] [Related]
6. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Cho YI; Choi JS; Jeong SY; Yoo HS Acta Biomater; 2010 Dec; 6(12):4725-33. PubMed ID: 20601229 [TBL] [Abstract][Full Text] [Related]
7. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro. Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569 [TBL] [Abstract][Full Text] [Related]
8. Multilineage differentiation of human mesenchymal stem cells in a three-dimensional nanofibrous scaffold. Li WJ; Tuli R; Huang X; Laquerriere P; Tuan RS Biomaterials; 2005 Sep; 26(25):5158-66. PubMed ID: 15792543 [TBL] [Abstract][Full Text] [Related]
9. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Li C; Vepari C; Jin HJ; Kim HJ; Kaplan DL Biomaterials; 2006 Jun; 27(16):3115-24. PubMed ID: 16458961 [TBL] [Abstract][Full Text] [Related]
10. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Prabhakaran MP; Venugopal JR; Chyan TT; Hai LB; Chan CK; Lim AY; Ramakrishna S Tissue Eng Part A; 2008 Nov; 14(11):1787-97. PubMed ID: 18657027 [TBL] [Abstract][Full Text] [Related]
11. Stem cell differentiation on electrospun nanofibrous substrates for vascular tissue engineering. Jia L; Prabhakaran MP; Qin X; Ramakrishna S Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4640-50. PubMed ID: 24094171 [TBL] [Abstract][Full Text] [Related]
12. The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells. Jung Y; Kim SH; Kim YH; Kim SH Biomed Mater; 2009 Oct; 4(5):055009. PubMed ID: 19779251 [TBL] [Abstract][Full Text] [Related]
13. Preliminary investigation of seeding mesenchymal stem cells on biodegradable scaffolds for vascular tissue engineering in vitro. Li CM; Wang ZG; Gu YQ; Dong JD; Qiu RX; Bian C; Liu XF; Feng ZG ASAIO J; 2009; 55(6):614-9. PubMed ID: 19812476 [TBL] [Abstract][Full Text] [Related]
14. In vitro response of the bone marrow-derived mesenchymal stem cells seeded in a type-I collagen-glycosaminoglycan scaffold for skin wound repair under the mechanical loading condition. Kobayashi M; Spector M Mol Cell Biomech; 2009 Dec; 6(4):217-27. PubMed ID: 19899445 [TBL] [Abstract][Full Text] [Related]
15. Role of nanofibrous poly(caprolactone) scaffolds in human mesenchymal stem cell attachment and spreading for in vitro bone tissue engineering--response to osteogenic regulators. Binulal NS; Deepthy M; Selvamurugan N; Shalumon KT; Suja S; Mony U; Jayakumar R; Nair SV Tissue Eng Part A; 2010 Feb; 16(2):393-404. PubMed ID: 19772455 [TBL] [Abstract][Full Text] [Related]
16. Engineering of vascular grafts with genetically modified bone marrow mesenchymal stem cells on poly (propylene carbonate) graft. Zhang J; Qi H; Wang H; Hu P; Ou L; Guo S; Li J; Che Y; Yu Y; Kong D Artif Organs; 2006 Dec; 30(12):898-905. PubMed ID: 17181830 [TBL] [Abstract][Full Text] [Related]
17. Electrospun gelatin/poly(L-lactide-co-epsilon-caprolactone) nanofibers for mechanically functional tissue-engineering scaffolds. Jeong SI; Lee AY; Lee YM; Shin H J Biomater Sci Polym Ed; 2008; 19(3):339-57. PubMed ID: 18325235 [TBL] [Abstract][Full Text] [Related]
18. Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Gupta D; Venugopal J; Prabhakaran MP; Dev VR; Low S; Choon AT; Ramakrishna S Acta Biomater; 2009 Sep; 5(7):2560-9. PubMed ID: 19269270 [TBL] [Abstract][Full Text] [Related]
19. Modulation of osteogenic differentiation of human mesenchymal stem cells by poly[(L-lactide)-co-(epsilon-caprolactone)]/gelatin nanofibers. Rim NG; Lee JH; Jeong SI; Lee BK; Kim CH; Shin H Macromol Biosci; 2009 Aug; 9(8):795-804. PubMed ID: 19434677 [TBL] [Abstract][Full Text] [Related]
20. Tissue-engineered bone formation with cryopreserved human bone marrow mesenchymal stem cells. Liu G; Shu C; Cui L; Liu W; Cao Y Cryobiology; 2008 Jun; 56(3):209-15. PubMed ID: 18430412 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]