These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 19539605)

  • 1. Organization and synergistic binding of copine I and annexin A1 on supported lipid bilayers observed by atomic force microscopy.
    Creutz CE; Edwardson JM
    Biochim Biophys Acta; 2009 Sep; 1788(9):1950-61. PubMed ID: 19539605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of irreversibly bound annexin A1 protein domains on POPC/POPS solid supported membranes.
    Faiss S; Kastl K; Janshoff A; Steinem C
    Biochim Biophys Acta; 2008; 1778(7-8):1601-10. PubMed ID: 18237543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of annexin I binding to calcium-induced phosphatidylserine domains.
    Janshoff A; Ross M; Gerke V; Steinem C
    Chembiochem; 2001 Aug; 2(7-8):587-90. PubMed ID: 11828493
    [No Abstract]   [Full Text] [Related]  

  • 4. Cyclic AMP signaling in Dictyostelium promotes the translocation of the copine family of calcium-binding proteins to the plasma membrane.
    Ilacqua AN; Price JE; Graham BN; Buccilli MJ; McKellar DR; Damer CK
    BMC Cell Biol; 2018 Jul; 19(1):13. PubMed ID: 30012091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The copines, a novel class of C2 domain-containing, calcium-dependent, phospholipid-binding proteins conserved from Paramecium to humans.
    Creutz CE; Tomsig JL; Snyder SL; Gautier MC; Skouri F; Beisson J; Cohen J
    J Biol Chem; 1998 Jan; 273(3):1393-402. PubMed ID: 9430674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The conserved core domains of annexins A1, A2, A5, and B12 can be divided into two groups with different Ca2+-dependent membrane-binding properties.
    Patel DR; Isas JM; Ladokhin AS; Jao CC; Kim YE; Kirsch T; Langen R; Haigler HT
    Biochemistry; 2005 Mar; 44(8):2833-44. PubMed ID: 15723527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Partially reversible adsorption of annexin A1 on POPC/POPS bilayers investigated by QCM measurements, SFM, and DMC simulations.
    Kastl K; Menke M; Lüthgens E; Faiss S; Gerke V; Janshoff A; Steinem C
    Chembiochem; 2006 Jan; 7(1):106-15. PubMed ID: 16307464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphatidylserine membrane domain clustering induced by annexin A2/S100A10 heterotetramer.
    Menke M; Gerke V; Steinem C
    Biochemistry; 2005 Nov; 44(46):15296-303. PubMed ID: 16285733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane-induced folding and structure of membrane-bound annexin A1 N-terminal peptides: implications for annexin-induced membrane aggregation.
    Hu NJ; Bradshaw J; Lauter H; Buckingham J; Solito E; Hofmann A
    Biophys J; 2008 Mar; 94(5):1773-81. PubMed ID: 17993484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the kinetics of adsorption and two-dimensional self-assembly of annexin A5 on supported lipid bilayers.
    Richter RP; Him JL; Tessier B; Tessier C; Brisson AR
    Biophys J; 2005 Nov; 89(5):3372-85. PubMed ID: 16085777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-speed atomic force microscopy shows that annexin V stabilizes membranes on the second timescale.
    Miyagi A; Chipot C; Rangl M; Scheuring S
    Nat Nanotechnol; 2016 Sep; 11(9):783-90. PubMed ID: 27271964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing the binding of annexin V to a lipid bilayer using molecular dynamics simulations.
    Chen Z; Mao Y; Yang J; Zhang T; Zhao L; Yu K; Zheng M; Jiang H; Yang H
    Proteins; 2014 Feb; 82(2):312-22. PubMed ID: 23934928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Annexin-V stabilizes membrane defects by inducing lipid phase transition.
    Lin YC; Chipot C; Scheuring S
    Nat Commun; 2020 Jan; 11(1):230. PubMed ID: 31932647
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The second C2-domain of copine-2, copine-6 and copine-7 is responsible for their calcium-dependent membrane association.
    Perestenko P; Watanabe M; Beusnard-Bee T; Guna P; McIlhinney J
    FEBS J; 2015 Oct; 282(19):3722-36. PubMed ID: 26175110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochemical characterization of copine: a ubiquitous Ca2+-dependent, phospholipid-binding protein.
    Tomsig JL; Creutz CE
    Biochemistry; 2000 Dec; 39(51):16163-75. PubMed ID: 11123945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization and dynamics of the proteolipid complexes formed by annexin V and lipids in planar supported lipid bilayers.
    Cézanne L; Lopez A; Loste F; Parnaud G; Saurel O; Demange P; Tocanne JF
    Biochemistry; 1999 Mar; 38(9):2779-86. PubMed ID: 10052949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting of Helicobacter pylori vacuolating toxin to lipid raft membrane domains analysed by atomic force microscopy.
    Geisse NA; Cover TL; Henderson RM; Edwardson JM
    Biochem J; 2004 Aug; 381(Pt 3):911-7. PubMed ID: 15128269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of high molecular weight complexes of lipin on a supported lipid bilayer observed by atomic force microscopy.
    Creutz CE; Eaton JM; Harris TE
    Biochemistry; 2013 Jul; 52(30):5092-102. PubMed ID: 23862673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retinoschisin (RS1) interacts with negatively charged lipid bilayers in the presence of Ca2+: an atomic force microscopy study.
    Kotova S; Vijayasarathy C; Dimitriadis EK; Ikonomou L; Jaffe H; Sieving PA
    Biochemistry; 2010 Aug; 49(33):7023-32. PubMed ID: 20677810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copine A, a calcium-dependent membrane-binding protein, transiently localizes to the plasma membrane and intracellular vacuoles in Dictyostelium.
    Damer CK; Bayeva M; Hahn ES; Rivera J; Socec CI
    BMC Cell Biol; 2005 Dec; 6():46. PubMed ID: 16343335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.