These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 19539670)
1. Investigative mining of sequence data for novel enzymes: a case study with nitrilases. Seffernick JL; Samanta SK; Louie TM; Wackett LP; Subramanian M J Biotechnol; 2009 Aug; 143(1):17-26. PubMed ID: 19539670 [TBL] [Abstract][Full Text] [Related]
2. Discovery of a mandelonitrile hydrolase from Bradyrhizobium japonicum USDA110 by rational genome mining. Zhu D; Mukherjee C; Biehl ER; Hua L J Biotechnol; 2007 May; 129(4):645-50. PubMed ID: 17350705 [TBL] [Abstract][Full Text] [Related]
3. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
4. Expression, characterization of a novel nitrilase PpL19 from Pseudomonas psychrotolerans with S-selectivity toward mandelonitrile present in active inclusion bodies. Sun H; Gao W; Wang H; Wei D Biotechnol Lett; 2016 Mar; 38(3):455-61. PubMed ID: 26564406 [TBL] [Abstract][Full Text] [Related]
5. Discovery and characterization of a highly efficient enantioselective mandelonitrile hydrolase from Burkholderia cenocepacia J2315 by phylogeny-based enzymatic substrate specificity prediction. Wang H; Sun H; Wei D BMC Biotechnol; 2013 Feb; 13():14. PubMed ID: 23414071 [TBL] [Abstract][Full Text] [Related]
6. A new nitrilase from Bradyrhizobium japonicum USDA 110. Gene cloning, biochemical characterization and substrate specificity. Zhu D; Mukherjee C; Yang Y; Rios BE; Gallagher DT; Smith NN; Biehl ER; Hua L J Biotechnol; 2008 Feb; 133(3):327-33. PubMed ID: 18061298 [TBL] [Abstract][Full Text] [Related]
7. Influence of different carboxy-terminal mutations on the substrate-, reaction- and enantiospecificity of the arylacetonitrilase from Pseudomonas fluorescens EBC191. Kiziak C; Klein J; Stolz A Protein Eng Des Sel; 2007 Aug; 20(8):385-96. PubMed ID: 17693456 [TBL] [Abstract][Full Text] [Related]
8. Bringing nitrilase sequences from databases to life: the search for novel substrate specificities with a focus on dinitriles. Veselá AB; Rucká L; Kaplan O; Pelantová H; Nešvera J; Pátek M; Martínková L Appl Microbiol Biotechnol; 2016 Mar; 100(5):2193-202. PubMed ID: 26521240 [TBL] [Abstract][Full Text] [Related]
9. A comparative study of nitrilases identified by genome mining. Kaplan O; Veselá AB; Petříčková A; Pasquarelli F; Pičmanová M; Rinágelová A; Bhalla TC; Pátek M; Martínková L Mol Biotechnol; 2013 Jul; 54(3):996-1003. PubMed ID: 23475593 [TBL] [Abstract][Full Text] [Related]
10. Identification and characterization of a novel nitrilase from Pseudomonas fluorescens Pf-5. Kim JS; Tiwari MK; Moon HJ; Jeya M; Ramu T; Oh DK; Kim IW; Lee JK Appl Microbiol Biotechnol; 2009 May; 83(2):273-83. PubMed ID: 19153727 [TBL] [Abstract][Full Text] [Related]
11. Improvement of the amides forming capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC191 by site-directed mutagenesis. Sosedov O; Stolz A Appl Microbiol Biotechnol; 2015 Mar; 99(6):2623-35. PubMed ID: 25248440 [TBL] [Abstract][Full Text] [Related]
12. Gene cloning, expression, and characterization of a nitrilase from Alcaligenes faecalis ZJUTB10. Liu ZQ; Dong LZ; Cheng F; Xue YP; Wang YS; Ding JN; Zheng YG; Shen YC J Agric Food Chem; 2011 Nov; 59(21):11560-70. PubMed ID: 21913706 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of the CN-hydrolase SA0302 from the pathogenic bacterium Staphylococcus aureus belonging to the Nit and NitFhit Branch of the nitrilase superfamily. Gordon RD; Qiu W; Romanov V; Lam K; Soloveychik M; Benetteraj D; Battaile KP; Chirgadze YN; Pai EF; Chirgadze NY J Biomol Struct Dyn; 2013 Oct; 31(10):1057-65. PubMed ID: 23607706 [TBL] [Abstract][Full Text] [Related]
14. Two rhizobial strains, Mesorhizobium loti MAFF303099 and Bradyrhizobium japonicum USDA110, encode haloalkane dehalogenases with novel structures and substrate specificities. Sato Y; Monincová M; Chaloupková R; Prokop Z; Ohtsubo Y; Minamisawa K; Tsuda M; Damborsky J; Nagata Y Appl Environ Microbiol; 2005 Aug; 71(8):4372-9. PubMed ID: 16085827 [TBL] [Abstract][Full Text] [Related]
15. Identification of active-site residues in Bradyrhizobium japonicum malonamidase E2. Koo HM; Choi SO; Kim HM; Kim YS Biochem J; 2000 Jul; 349(Pt 2):501-7. PubMed ID: 10880349 [TBL] [Abstract][Full Text] [Related]
16. Directed evolution of nitrilase PpL19 from Pseudomonas psychrotolerans L19 and identification of enantiocomplementary mutants toward mandelonitrile. Sun H; Wang H; Gao W; Chen L; Wu K; Wei D Biochem Biophys Res Commun; 2015 Dec; 468(4):820-5. PubMed ID: 26577409 [TBL] [Abstract][Full Text] [Related]
17. Identification of active-site residues in Bradyrhizobium japonicum malonyl-coenzyme A synthetase. Koo HM; Kim YS Arch Biochem Biophys; 2000 Jun; 378(1):167-74. PubMed ID: 10871057 [TBL] [Abstract][Full Text] [Related]
18. Postgenomic scan of metallo-beta-lactamase homologues in rhizobacteria: identification and characterization of BJP-1, a subclass B3 ortholog from Bradyrhizobium japonicum. Stoczko M; Frère JM; Rossolini GM; Docquier JD Antimicrob Agents Chemother; 2006 Jun; 50(6):1973-81. PubMed ID: 16723554 [TBL] [Abstract][Full Text] [Related]
19. From sequence to function: a new workflow for nitrilase identification. Egelkamp R; Friedrich I; Hertel R; Daniel R Appl Microbiol Biotechnol; 2020 Jun; 104(11):4957-4970. PubMed ID: 32291488 [TBL] [Abstract][Full Text] [Related]
20. Identification of amino acid residues responsible for the enantioselectivity and amide formation capacity of the Arylacetonitrilase from Pseudomonas fluorescens EBC191. Kiziak C; Stolz A Appl Environ Microbiol; 2009 Sep; 75(17):5592-9. PubMed ID: 19581475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]