These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 19539987)

  • 1. The in vivo bone formation by mesenchymal stem cells in zein scaffolds.
    Tu J; Wang H; Li H; Dai K; Wang J; Zhang X
    Biomaterials; 2009 Sep; 30(26):4369-76. PubMed ID: 19539987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of bone formation by BMP-7 transduced MSCs on biomimetic nano-hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects.
    Li J; Li Y; Ma S; Gao Y; Zuo Y; Hu J
    J Biomed Mater Res A; 2010 Dec; 95(4):973-81. PubMed ID: 20845497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced bone tissue regeneration by antibacterial and osteoinductive silica-HACC-zein composite scaffolds loaded with rhBMP-2.
    Zhou P; Xia Y; Cheng X; Wang P; Xie Y; Xu S
    Biomaterials; 2014 Dec; 35(38):10033-45. PubMed ID: 25260421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Endochondral Ossification-Based Approach to Bone Repair: Chondrogenically Primed Mesenchymal Stem Cell-Laden Scaffolds Support Greater Repair of Critical-Sized Cranial Defects Than Osteogenically Stimulated Constructs In Vivo.
    Thompson EM; Matsiko A; Kelly DJ; Gleeson JP; O'Brien FJ
    Tissue Eng Part A; 2016 Mar; 22(5-6):556-67. PubMed ID: 26896424
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of cell-seeded hydroxyapatite scaffolds on rabbit radius bone regeneration.
    Rathbone CR; Guda T; Singleton BM; Oh DS; Appleford MR; Ong JL; Wenke JC
    J Biomed Mater Res A; 2014 May; 102(5):1458-66. PubMed ID: 23776110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving bone repair of femoral and radial defects in rabbit by incorporating PRP into PLGA/CPC composite scaffold with unidirectional pore structure.
    He F; Chen Y; Li J; Lin B; Ouyang Y; Yu B; Xia Y; Yu B; Ye J
    J Biomed Mater Res A; 2015 Apr; 103(4):1312-24. PubMed ID: 24890626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cell-free scaffolds with different stiffness but same microstructure promote bone regeneration in rabbit large bone defect model.
    Chen G; Yang L; Lv Y
    J Biomed Mater Res A; 2016 Apr; 104(4):833-41. PubMed ID: 26650620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of mechanical properties of zein porous scaffold by quenching/electrospun fiber reinforcement.
    Liu C; Yang H; Shen NA; Li J; Chen Y; Wang JY
    Biomed Mater; 2021 Oct; 16(6):. PubMed ID: 34517347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways.
    Wang C; Lin K; Chang J; Sun J
    Biomaterials; 2013 Jan; 34(1):64-77. PubMed ID: 23069715
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced angiogenesis and osteogenesis in critical bone defects by the controlled release of BMP-2 and VEGF: implantation of electron beam melting-fabricated porous Ti6Al4V scaffolds incorporating growth factor-doped fibrin glue.
    Lv J; Xiu P; Tan J; Jia Z; Cai H; Liu Z
    Biomed Mater; 2015 Jun; 10(3):035013. PubMed ID: 26107105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoblastic differentiation and potent osteogenicity of three-dimensional hBMSC-BCP particle constructs.
    Cordonnier T; Langonné A; Corre P; Renaud A; Sensebé L; Rosset P; Layrolle P; Sohier J
    J Tissue Eng Regen Med; 2014 May; 8(5):364-76. PubMed ID: 22689391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of autologous bone marrow stromal cells differentiated on scaffolds for canine tibial bone reconstruction.
    Özdal-Kurt F; Tuğlu I; Vatansever HS; Tong S; Deliloğlu-Gürhan SI
    Biotech Histochem; 2015; 90(7):516-28. PubMed ID: 25994048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo biocompatibility and mechanical properties of porous zein scaffolds.
    Wang HJ; Gong SJ; Lin ZX; Fu JX; Xue ST; Huang JC; Wang JY
    Biomaterials; 2007 Sep; 28(27):3952-64. PubMed ID: 17582490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repairing rabbit radial defects by combining bone marrow stroma stem cells with bone scaffold material comprising a core-cladding structure.
    Wu H; Liu GH; Wu Q; Yu B
    Genet Mol Res; 2015 Oct; 14(4):11933-43. PubMed ID: 26505341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable borosilicate bioactive glass scaffolds with a trabecular microstructure for bone repair.
    Gu Y; Wang G; Zhang X; Zhang Y; Zhang C; Liu X; Rahaman MN; Huang W; Pan H
    Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():294-300. PubMed ID: 24433915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.
    Kim IG; Hwang MP; Du P; Ko J; Ha CW; Do SH; Park K
    Biomaterials; 2015 May; 50():75-86. PubMed ID: 25736498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vivo mineralization and osteogenesis of nanocomposite scaffold of poly(lactide-co-glycolide) and hydroxyapatite surface-grafted with poly(L-lactide).
    Zhang P; Hong Z; Yu T; Chen X; Jing X
    Biomaterials; 2009 Jan; 30(1):58-70. PubMed ID: 18838160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pH in the microenvironment of human mesenchymal stem cells is a critical factor for optimal osteogenesis in tissue-engineered constructs.
    Monfoulet LE; Becquart P; Marchat D; Vandamme K; Bourguignon M; Pacard E; Viateau V; Petite H; Logeart-Avramoglou D
    Tissue Eng Part A; 2014 Jul; 20(13-14):1827-40. PubMed ID: 24447025
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation of rabbit bone mesenchymal stem cells into endothelial cells in vitro and promotion of defective bone regeneration in vivo.
    Liu J; Liu C; Sun B; Shi C; Qiao C; Ke X; Liu S; Liu X; Sun H
    Cell Biochem Biophys; 2014 Apr; 68(3):479-87. PubMed ID: 23943083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Treatment Efficacy of Bone Tissue Engineering Strategy for Repairing Segmental Bone Defects Under Osteoporotic Conditions.
    Wang ZX; Chen C; Zhou Q; Wang XS; Zhou G; Liu W; Zhang ZY; Cao Y; Zhang WJ
    Tissue Eng Part A; 2015 Sep; 21(17-18):2346-55. PubMed ID: 26066049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.