BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 19539996)

  • 61. Ligand, cofactor, and residue vibrations in the catalytic site of endothelial nitric oxide synthase.
    Ingledew WJ; Smith SM; Gao YT; Jones RJ; Salerno JC; Rich PR
    Biochemistry; 2005 Mar; 44(11):4238-46. PubMed ID: 15766252
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Determination of the nature of the heme environment in nitrosyl indoleamine 2,3-dioxygenase using Multiple-scattering analyses of X-ray absorption fine structure.
    Aitken JB; Thomas SE; Stocker R; Thomas SR; Takikawa O; Armstrong RS; Lay PA
    Biochemistry; 2004 May; 43(17):4892-8. PubMed ID: 15109246
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Toward modeling H-NOX domains: a DFT study of heme-NO complexes as hydrogen bond acceptors.
    Tangen E; Svadberg A; Ghosh A
    Inorg Chem; 2005 Oct; 44(22):7802-5. PubMed ID: 16241129
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Heme structures of five variants of hemoglobin M probed by resonance Raman spectroscopy.
    Jin Y; Nagai M; Nagai Y; Nagatomo S; Kitagawa T
    Biochemistry; 2004 Jul; 43(26):8517-27. PubMed ID: 15222763
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The second step of the nitric oxide synthase reaction: evidence for ferric-peroxo as the active oxidant.
    Woodward JJ; Chang MM; Martin NI; Marletta MA
    J Am Chem Soc; 2009 Jan; 131(1):297-305. PubMed ID: 19128180
    [TBL] [Abstract][Full Text] [Related]  

  • 66. New structural insights from Raman spectroscopy of proteins and their assemblies.
    Thomas GJ
    Biopolymers; 2002; 67(4-5):214-25. PubMed ID: 12012434
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Electronic structure of ferric heme nitrosyl complexes with thiolate coordination.
    Paulat F; Lehnert N
    Inorg Chem; 2007 Mar; 46(5):1547-9. PubMed ID: 17286401
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Probing the Hydrogen Bonding of the Ferrous-NO Heme Center of nNOS by Pulsed Electron Paramagnetic Resonance.
    Astashkin AV; Chen L; Elmore BO; Kunwar D; Miao Y; Li H; Poulos TL; Roman LJ; Feng C
    J Phys Chem A; 2015 Jun; 119(25):6641-9. PubMed ID: 26035438
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Bonding in HNO-myoglobin as characterized by X-ray absorption and resonance raman spectroscopies.
    Immoos CE; Sulc F; Farmer PJ; Czarnecki K; Bocian DF; Levina A; Aitken JB; Armstrong RS; Lay PA
    J Am Chem Soc; 2005 Jan; 127(3):814-5. PubMed ID: 15656601
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ligand interactions in the distal heme pocket of Mycobacterium tuberculosis truncated hemoglobin N: roles of TyrB10 and GlnE11 residues.
    Ouellet Y; Milani M; Couture M; Bolognesi M; Guertin M
    Biochemistry; 2006 Jul; 45(29):8770-81. PubMed ID: 16846220
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identification of Trp106 as the tryptophanyl radical intermediate in Synechocystis PCC6803 catalase-peroxidase by multifrequency Electron Paramagnetic Resonance spectroscopy.
    Jakopitsch C; Obinger C; Un S; Ivancich A
    J Inorg Biochem; 2006 May; 100(5-6):1091-9. PubMed ID: 16574230
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Substrate-ligand interactions in Geobacillus stearothermophilus nitric oxide synthase.
    Kabir M; Sudhamsu J; Crane BR; Yeh SR; Rousseau DL
    Biochemistry; 2008 Nov; 47(47):12389-97. PubMed ID: 18956884
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Interactions between substrates and the haem-bound nitric oxide of ferric and ferrous bacterial nitric oxide synthases.
    Chartier FJ; Couture M
    Biochem J; 2007 Jan; 401(1):235-45. PubMed ID: 16970546
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Manipulating the covalent link between distal side tryptophan, tyrosine, and methionine in catalase-peroxidases: an electronic absorption and resonance Raman study.
    Santoni E; Jakopitsch C; Obinger C; Smulevich G
    Biopolymers; 2004 May-Jun 5; 74(1-2):46-50. PubMed ID: 15137092
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Alternative modes of O
    Soldatova AV; Spiro TG
    J Inorg Biochem; 2020 Jun; 207():111054. PubMed ID: 32217351
    [TBL] [Abstract][Full Text] [Related]  

  • 76. [Electronic structure of hemoglobin's heme complexes with nitric oxide and dynamics of atomic base under physiological temperature].
    Romanova TA; Krasnov PO; Avramov PV
    Vopr Med Khim; 2001; 47(3):308-14. PubMed ID: 11558313
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Heme coordination and structure of the catalytic site in nitric oxide synthase.
    Wang J; Stuehr DJ; Ikeda-Saito M; Rousseau DL
    J Biol Chem; 1993 Oct; 268(30):22255-8. PubMed ID: 7693663
    [TBL] [Abstract][Full Text] [Related]  

  • 78. X-ray crystal structural analysis of the binding site in the ferric and oxyferrous forms of the recombinant heme dehaloperoxidase cloned from Amphitrite ornata.
    de Serrano V; Chen Z; Davis MF; Franzen S
    Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1094-101. PubMed ID: 17881827
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Stability of the heme Fe-N-terminal amino group coordination bond in denatured cytochrome c.
    Tai H; Munegumi T; Yamamoto Y
    Inorg Chem; 2009 Jan; 48(1):331-8. PubMed ID: 19053349
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Roles of the heme proximal side residues tryptophan409 and tryptophan421 of neuronal nitric oxide synthase in the electron transfer reaction.
    Yumoto T; Sagami I; Daff S; Shimizu T
    J Inorg Biochem; 2000 Nov; 82(1-4):163-70. PubMed ID: 11132623
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.