These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 19540048)

  • 1. Field-dependent electron emission patterns from individual SWCNTs simulated with a multi-scale algorithm.
    Wang W; Xu N; Li Z
    Ultramicroscopy; 2009 Sep; 109(10):1295-8. PubMed ID: 19540048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anode distance effect on field electron emission from carbon nanotubes: a molecular/quantum mechanical simulation.
    He C; Wang W; Deng S; Xu N; Li Z; Chen G; Peng J
    J Phys Chem A; 2009 Jun; 113(25):7048-53. PubMed ID: 19534558
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field emission properties of N-doped capped single-walled carbon nanotubes: a first-principles density-functional study.
    Qiao L; Zheng WT; Xu H; Zhang L; Jiang Q
    J Chem Phys; 2007 Apr; 126(16):164702. PubMed ID: 17477619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative analysis of electron field-emission characteristics of individual carbon nanotubes: the importance of the tip structure.
    Wang MS; Peng LM; Wang JY; Jin CH; Chen Q
    J Phys Chem B; 2006 May; 110(19):9397-402. PubMed ID: 16686482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling and calculation of field emission enhancement factor for carbon nanotubes array.
    Wang XQ; Wang M; Li ZH; Xu YB; He PM
    Ultramicroscopy; 2005 Feb; 102(3):181-7. PubMed ID: 15639348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chirality and diameter dependent x-ray absorption of single walled carbon nanotubes.
    Gao B; Wu Z; Agren H; Luo Y
    J Chem Phys; 2009 Jul; 131(3):034704. PubMed ID: 19624218
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel planar field emission of ultra-thin individual carbon nanotubes.
    Song X; Gao J; Fu Q; Xu J; Zhao Q; Yu D
    Nanotechnology; 2009 Oct; 20(40):405208. PubMed ID: 19752498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single crystals of single-walled carbon nanotubes formed by self-assembly.
    Schlittler RR; Seo JW; Gimzewski JK; Durkan C; Saifullah MS; Welland ME
    Science; 2001 May; 292(5519):1136-9. PubMed ID: 11292859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaled fabrication of single-nanotube-tipped ends from carbon nanotube micro-yarns and their field emission applications.
    Wei Y; Liu L; Liu P; Xiao L; Jiang K; Fan S
    Nanotechnology; 2008 Nov; 19(47):475707. PubMed ID: 21836288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalyst size effects on the growth of single-walled nanotubes in neutral and plasma systems.
    Tam E; Ostrikov KK
    Nanotechnology; 2009 Sep; 20(37):375603. PubMed ID: 19706955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanostructures as catalytic support for chemiluminescence of sulfur compounds in a molecular emission cavity analysis system.
    Safavi A; Maleki N; Doroodmand MM; Koleini MM
    Anal Chim Acta; 2009 Jun; 644(1-2):61-7. PubMed ID: 19463563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroluminescence from electrolyte-gated carbon nanotube field-effect transistors.
    Zaumseil J; Ho X; Guest JR; Wiederrecht GP; Rogers JA
    ACS Nano; 2009 Aug; 3(8):2225-34. PubMed ID: 19634895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aromatic electron acceptors change the chirality dependence of single-walled carbon nanotube oxidation.
    Knorr FJ; Hung WC; Wai CM
    Langmuir; 2009 Sep; 25(18):10417-21. PubMed ID: 19735124
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Visualization of individual emission sites on flat broad-area field emission cathodes.
    Nemanic V; Zumer M; Zajec B
    Ultramicroscopy; 2008 Jan; 108(2):69-73. PubMed ID: 17485174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the emission characteristics of a carbon nanotube cathode in an aging process.
    Liu W; Li X; Zhu C
    Ultramicroscopy; 2007 Sep; 107(9):833-7. PubMed ID: 17408860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective enrichment of (6,5) and (8,3) single-walled carbon nanotubes via cosurfactant extraction from narrow (n,m) distribution samples.
    Wei L; Wang B; Goh TH; Li LJ; Yang Y; Chan-Park MB; Chen Y
    J Phys Chem B; 2008 Mar; 112(10):2771-4. PubMed ID: 18278906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncovering operational mechanisms of a single-walled carbon nanotube network device using local probe electrical characterizations.
    Jeong H; Gweon HM; Kwon BJ; Ahn YH; Lee S; Park JY
    Nanotechnology; 2009 Aug; 20(34):345202. PubMed ID: 19652281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of continuum mechanics models in predicting buckling strains of single-walled carbon nanotubes.
    Zhang YY; Wang CM; Duan WH; Xiang Y; Zong Z
    Nanotechnology; 2009 Sep; 20(39):395707. PubMed ID: 19724103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoration of gold nanoparticles on surface-grown single-walled carbon nanotubes for detection of every nanotube by surface-enhanced Raman spectroscopy.
    Chu H; Wang J; Ding L; Yuan D; Zhang Y; Liu J; Li Y
    J Am Chem Soc; 2009 Oct; 131(40):14310-6. PubMed ID: 19764748
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Damages of screen-printed carbon nanotube cold cathode during the field emission process.
    Zhang G; Chen J; Deng SZ; She JC; Xu NS
    Ultramicroscopy; 2009 Apr; 109(5):385-9. PubMed ID: 19110375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.