These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 19540161)

  • 1. Hydrodynamic glide efficiency in swimming.
    Naemi R; Easson WJ; Sanders RH
    J Sci Med Sport; 2010 Jul; 13(4):444-51. PubMed ID: 19540161
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A "hydrokinematic" method of measuring the glide efficiency of a human swimmer.
    Naemi R; Sanders RH
    J Biomech Eng; 2008 Dec; 130(6):061016. PubMed ID: 19045545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skin-friction drag analysis from the forced convection modeling in simplified underwater swimming.
    Polidori G; Taïar R; Fohanno S; Mai TH; Lodini A
    J Biomech; 2006; 39(13):2535-41. PubMed ID: 16153653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Submerged swimming of the great cormorant Phalacrocorax carbo sinensis is a variant of the burst-and-glide gait.
    Ribak G; Weihs D; Arad Z
    J Exp Biol; 2005 Oct; 208(Pt 20):3835-49. PubMed ID: 16215212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational fluid dynamics vs. inverse dynamics methods to determine passive drag in two breaststroke glide positions.
    Costa L; Mantha VR; Silva AJ; Fernandes RJ; Marinho DA; Vilas-Boas JP; Machado L; Rouboa A
    J Biomech; 2015 Jul; 48(10):2221-6. PubMed ID: 26087879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A biomechanical review of the techniques used to estimate or measure resistive forces in swimming.
    Sacilotto GB; Ball N; Mason BR
    J Appl Biomech; 2014 Feb; 30(1):119-27. PubMed ID: 24676518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic analysis of human swimming based on VOF method.
    Zhan JM; Li TZ; Chen XB; Li YS
    Comput Methods Biomech Biomed Engin; 2017 May; 20(6):645-652. PubMed ID: 28127994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Augmented feedback can change body shape to improve glide efficiency in swimming.
    Papic C; Andersen J; Naemi R; Hodierne R; Sanders RH
    Sports Biomech; 2024 Jul; 23(7):898-917. PubMed ID: 33821747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationships between glide efficiency and swimmers' size and shape characteristics.
    Naemi R; Psycharakis SG; McCabe C; Connaboy C; Sanders RH
    J Appl Biomech; 2012 Aug; 28(4):400-11. PubMed ID: 22086090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Net forces during tethered simulation of underwater streamlined gliding and kicking techniques of the freestyle turn.
    Lyttle AD; Blanksby BA; Elliott BC; Lloyd DG
    J Sports Sci; 2000 Oct; 18(10):801-7. PubMed ID: 11055815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How does drag affect the underwater phase of a swimming start?
    Tor E; Pease DL; Ball KA
    J Appl Biomech; 2015 Feb; 31(1):8-12. PubMed ID: 25134424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinematic and dynamic comparison of surface and underwater displacement in high level monofin swimming.
    Nicolas G; Bideau B
    Hum Mov Sci; 2009 Aug; 28(4):480-93. PubMed ID: 19395109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approach to identifying the effect of technique asymmetries on body alignment in swimming exemplified by a case study of a breaststroke swimmer.
    Sanders RH; Fairweather MM; Alcock A; McCabe CB
    J Sports Sci Med; 2015 Jun; 14(2):304-14. PubMed ID: 25983579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Swimming in the upside down catfish Synodontis nigriventris: it matters which way is up.
    Blake RW; Chan KH
    J Exp Biol; 2007 Sep; 210(Pt 17):2979-89. PubMed ID: 17704073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of modes of feedback on glide performance in swimming.
    Thow JL; Naemi R; Sanders RH
    J Sports Sci; 2012; 30(1):43-52. PubMed ID: 22168429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stroke patterns and regulation of swim speed and energy cost in free-ranging Brünnich's guillemots.
    Lovvorn JR; Watanuki Y; Kato A; Naito Y; Liggins GA
    J Exp Biol; 2004 Dec; 207(Pt 26):4679-95. PubMed ID: 15579562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Variability in measurement of swimming forces: a meta-analysis of passive and active drag.
    Havriluk R
    Res Q Exerc Sport; 2007 Mar; 78(2):32-9. PubMed ID: 17479572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the diverse roles of fluid dynamic drag in animal swimming and flying.
    Godoy-Diana R; Thiria B
    J R Soc Interface; 2018 Feb; 15(139):. PubMed ID: 29445037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Effect of Depth on Drag During the Streamlined Glide: A Three-Dimensional CFD Analysis.
    Novais ML; Silva AJ; Mantha VR; Ramos RJ; Rouboa AI; Vilas-Boas JP; Luís SR; Marinho DA
    J Hum Kinet; 2012 Jun; 33():55-62. PubMed ID: 23487502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional CFD analysis of the hand and forearm in swimming.
    Marinho DA; Silva AJ; Reis VM; Barbosa TM; Vilas-Boas JP; Alves FB; Machado L; Rouboa AI
    J Appl Biomech; 2011 Feb; 27(1):74-80. PubMed ID: 21451185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.