BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

553 related articles for article (PubMed ID: 19540172)

  • 21. Electricity generation of single-chamber microbial fuel cells at low temperatures.
    Cheng S; Xing D; Logan BE
    Biosens Bioelectron; 2011 Jan; 26(5):1913-7. PubMed ID: 20627513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving phosphate buffer-free cathode performance of microbial fuel cell based on biological nitrification.
    You SJ; Ren NQ; Zhao QL; Kiely PD; Wang JY; Yang FL; Fu L; Peng L
    Biosens Bioelectron; 2009 Aug; 24(12):3698-701. PubMed ID: 19502045
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Open circuit versus closed circuit enrichment of anodic biofilms in MFC: effect on performance and anodic communities.
    Larrosa-Guerrero A; Scott K; Katuri KP; Godinez C; Head IM; Curtis T
    Appl Microbiol Biotechnol; 2010 Aug; 87(5):1699-713. PubMed ID: 20473665
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load.
    Mohan SV; Raghavulu SV; Peri D; Sarma PN
    Biosens Bioelectron; 2009 Mar; 24(7):2021-7. PubMed ID: 19058958
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Separator characteristics for increasing performance of microbial fuel cells.
    Zhang X; Cheng S; Wang X; Huang X; Logan BE
    Environ Sci Technol; 2009 Nov; 43(21):8456-61. PubMed ID: 19924984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased sustainable electricity generation in up-flow air-cathode microbial fuel cells.
    You S; Zhao Q; Zhang J; Liu H; Jiang J; Zhao S
    Biosens Bioelectron; 2008 Feb; 23(7):1157-60. PubMed ID: 18068969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures.
    Watson VJ; Logan BE
    Biotechnol Bioeng; 2010 Feb; 105(3):489-98. PubMed ID: 19787640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electricity generation from cysteine in a microbial fuel cell.
    Logan BE; Murano C; Scott K; Gray ND; Head IM
    Water Res; 2005 Mar; 39(5):942-52. PubMed ID: 15743641
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell.
    Chung K; Fujiki I; Okabe S
    Bioresour Technol; 2011 Jan; 102(1):355-60. PubMed ID: 20923722
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell.
    Aldrovandi A; Marsili E; Stante L; Paganin P; Tabacchioni S; Giordano A
    Bioresour Technol; 2009 Jul; 100(13):3252-60. PubMed ID: 19303285
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells.
    Zhang L; Liu C; Zhuang L; Li W; Zhou S; Zhang J
    Biosens Bioelectron; 2009 May; 24(9):2825-9. PubMed ID: 19297145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A polypyrrole/anthraquinone-2,6-disulphonic disodium salt (PPy/AQDS)-modified anode to improve performance of microbial fuel cells.
    Feng C; Ma L; Li F; Mai H; Lang X; Fan S
    Biosens Bioelectron; 2010 Feb; 25(6):1516-20. PubMed ID: 19889528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of different substrates on the performance, bacterial diversity, and bacterial viability in microbial fuel cells.
    Chae KJ; Choi MJ; Lee JW; Kim KY; Kim IS
    Bioresour Technol; 2009 Jul; 100(14):3518-25. PubMed ID: 19345574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of inoculum types on bacterial adhesion and power production in microbial fuel cells.
    Jiang D; Li B; Jia W; Lei Y
    Appl Biochem Biotechnol; 2010 Jan; 160(1):182-96. PubMed ID: 19214793
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Operation and characterization of a microbial fuel cell fed with pretreated cheese whey at different organic loads.
    Tremouli A; Antonopoulou G; Bebelis S; Lyberatos G
    Bioresour Technol; 2013 Mar; 131():380-9. PubMed ID: 23376203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.
    Lee YY; Kim TG; Cho KS
    J Biotechnol; 2015 Oct; 211():130-7. PubMed ID: 26235818
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electricity generation in low cost microbial fuel cell made up of earthenware of different thickness.
    Behera M; Ghangrekar MM
    Water Sci Technol; 2011; 64(12):2468-73. PubMed ID: 22170843
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance evaluation of low cost microbial fuel cell fabricated using earthen pot with biotic and abiotic cathode.
    Behera M; Jana PS; Ghangrekar MM
    Bioresour Technol; 2010 Feb; 101(4):1183-9. PubMed ID: 19800223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating microbial fuel cell bioanode performance under different cathode conditions.
    Borole AP; Hamilton CY; Aaron DS; Tsouris C
    Biotechnol Prog; 2009; 25(6):1630-6. PubMed ID: 19731337
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the dynamic response of the anode in microbial fuel cells.
    Katuri KP; Scott K
    Enzyme Microb Technol; 2011 Apr; 48(4-5):351-8. PubMed ID: 22112949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.