These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 19540248)
1. Biological consequences of potential repair intermediates of clustered base damage site in Escherichia coli. Shikazono N; O'Neill P Mutat Res; 2009 Oct; 669(1-2):162-8. PubMed ID: 19540248 [TBL] [Abstract][Full Text] [Related]
2. Recognition and kinetics for excision of a base lesion within clustered DNA damage by the Escherichia coli proteins Fpg and Nth. David-Cordonnier MH; Laval J; O'Neill P Biochemistry; 2001 May; 40(19):5738-46. PubMed ID: 11341839 [TBL] [Abstract][Full Text] [Related]
3. The roles of specific glycosylases in determining the mutagenic consequences of clustered DNA base damage. Shikazono N; Pearson C; O'Neill P; Thacker J Nucleic Acids Res; 2006; 34(13):3722-30. PubMed ID: 16893955 [TBL] [Abstract][Full Text] [Related]
4. Significance of DNA polymerase I in in vivo processing of clustered DNA damage. Shikazono N; Akamatsu K; Takahashi M; Noguchi M; Urushibara A; O'Neill P; Yokoya A Mutat Res; 2013 Sep; 749(1-2):9-15. PubMed ID: 23958410 [TBL] [Abstract][Full Text] [Related]
5. In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites. Harrison L; Hatahet Z; Wallace SS J Mol Biol; 1999 Jul; 290(3):667-84. PubMed ID: 10395822 [TBL] [Abstract][Full Text] [Related]
6. Increased mutability and decreased repairability of a three-lesion clustered DNA-damaged site comprised of an AP site and bi-stranded 8-oxoG lesions. Cunniffe S; Walker A; Stabler R; O'Neill P; Lomax ME Int J Radiat Biol; 2014 Jun; 90(6):468-79. PubMed ID: 24597750 [TBL] [Abstract][Full Text] [Related]
7. Hierarchy of lesion processing governs the repair, double-strand break formation and mutability of three-lesion clustered DNA damage. Eccles LJ; Lomax ME; O'Neill P Nucleic Acids Res; 2010 Mar; 38(4):1123-34. PubMed ID: 19965771 [TBL] [Abstract][Full Text] [Related]
8. Processing of thymine glycol in a clustered DNA damage site: mutagenic or cytotoxic. Bellon S; Shikazono N; Cunniffe S; Lomax M; O'Neill P Nucleic Acids Res; 2009 Jul; 37(13):4430-40. PubMed ID: 19468043 [TBL] [Abstract][Full Text] [Related]
9. Enhanced mutagenic potential of 8-oxo-7,8-dihydroguanine when present within a clustered DNA damage site. Pearson CG; Shikazono N; Thacker J; O'Neill P Nucleic Acids Res; 2004; 32(1):263-70. PubMed ID: 14715924 [TBL] [Abstract][Full Text] [Related]
10. An AP site can protect against the mutagenic potential of 8-oxoG when present within a tandem clustered site in E. coli. Cunniffe SM; Lomax ME; O'Neill P DNA Repair (Amst); 2007 Dec; 6(12):1839-49. PubMed ID: 17704010 [TBL] [Abstract][Full Text] [Related]
11. Excision of 8-oxoguanine within clustered damage by the yeast OGG1 protein. David-Cordonnier MH; Boiteux S; O'Neill P Nucleic Acids Res; 2001 Mar; 29(5):1107-13. PubMed ID: 11222760 [TBL] [Abstract][Full Text] [Related]
12. The role of nucleotide excision repair of Escherichia coli in repair of spontaneous and gamma-radiation-induced DNA damage in the lacZalpha gene. Kuipers GK; Slotman BJ; Poldervaart HA; van Vilsteren IM; Reitsma-Wijker CA; Lafleur MV Mutat Res; 2000 Jul; 460(2):117-25. PubMed ID: 10882852 [TBL] [Abstract][Full Text] [Related]
13. Escherichia coli Nth and human hNTH1 DNA glycosylases are involved in removal of 8-oxoguanine from 8-oxoguanine/guanine mispairs in DNA. Matsumoto Y; Zhang QM; Takao M; Yasui A; Yonei S Nucleic Acids Res; 2001 May; 29(9):1975-81. PubMed ID: 11328882 [TBL] [Abstract][Full Text] [Related]
14. Clustered DNA damage, influence on damage excision by XRS5 nuclear extracts and Escherichia coli Nth and Fpg proteins. David-Cordonnier MH; Laval J; O'Neill P J Biol Chem; 2000 Apr; 275(16):11865-73. PubMed ID: 10766813 [TBL] [Abstract][Full Text] [Related]
15. Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions. Hazra TK; Hill JW; Izumi T; Mitra S Prog Nucleic Acid Res Mol Biol; 2001; 68():193-205. PubMed ID: 11554297 [TBL] [Abstract][Full Text] [Related]
16. Efficiency of incision of an AP site within clustered DNA damage by the major human AP endonuclease. David-Cordonnier MH; Cunniffe SM; Hickson ID; O'Neill P Biochemistry; 2002 Jan; 41(2):634-42. PubMed ID: 11781104 [TBL] [Abstract][Full Text] [Related]
17. Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair. Hill JW; Hazra TK; Izumi T; Mitra S Nucleic Acids Res; 2001 Jan; 29(2):430-8. PubMed ID: 11139613 [TBL] [Abstract][Full Text] [Related]
18. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. Bjorâs M; Luna L; Johnsen B; Hoff E; Haug T; Rognes T; Seeberg E EMBO J; 1997 Oct; 16(20):6314-22. PubMed ID: 9321410 [TBL] [Abstract][Full Text] [Related]
19. Strand with mutagenic lesion is preferentially used as a template in the region of a bi-stranded clustered DNA damage site in Escherichia coli. Shikazono N; Akamatsu K Sci Rep; 2020 Jun; 10(1):9737. PubMed ID: 32546758 [TBL] [Abstract][Full Text] [Related]
20. Processing of model single-strand breaks in phi X-174 RF transfecting DNA by Escherichia coli. Kow YW; Faundez G; Melamede RJ; Wallace SS Radiat Res; 1991 Jun; 126(3):357-66. PubMed ID: 1852023 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]