BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 19540248)

  • 1. Biological consequences of potential repair intermediates of clustered base damage site in Escherichia coli.
    Shikazono N; O'Neill P
    Mutat Res; 2009 Oct; 669(1-2):162-8. PubMed ID: 19540248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition and kinetics for excision of a base lesion within clustered DNA damage by the Escherichia coli proteins Fpg and Nth.
    David-Cordonnier MH; Laval J; O'Neill P
    Biochemistry; 2001 May; 40(19):5738-46. PubMed ID: 11341839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The roles of specific glycosylases in determining the mutagenic consequences of clustered DNA base damage.
    Shikazono N; Pearson C; O'Neill P; Thacker J
    Nucleic Acids Res; 2006; 34(13):3722-30. PubMed ID: 16893955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of DNA polymerase I in in vivo processing of clustered DNA damage.
    Shikazono N; Akamatsu K; Takahashi M; Noguchi M; Urushibara A; O'Neill P; Yokoya A
    Mutat Res; 2013 Sep; 749(1-2):9-15. PubMed ID: 23958410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro repair of synthetic ionizing radiation-induced multiply damaged DNA sites.
    Harrison L; Hatahet Z; Wallace SS
    J Mol Biol; 1999 Jul; 290(3):667-84. PubMed ID: 10395822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased mutability and decreased repairability of a three-lesion clustered DNA-damaged site comprised of an AP site and bi-stranded 8-oxoG lesions.
    Cunniffe S; Walker A; Stabler R; O'Neill P; Lomax ME
    Int J Radiat Biol; 2014 Jun; 90(6):468-79. PubMed ID: 24597750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchy of lesion processing governs the repair, double-strand break formation and mutability of three-lesion clustered DNA damage.
    Eccles LJ; Lomax ME; O'Neill P
    Nucleic Acids Res; 2010 Mar; 38(4):1123-34. PubMed ID: 19965771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processing of thymine glycol in a clustered DNA damage site: mutagenic or cytotoxic.
    Bellon S; Shikazono N; Cunniffe S; Lomax M; O'Neill P
    Nucleic Acids Res; 2009 Jul; 37(13):4430-40. PubMed ID: 19468043
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced mutagenic potential of 8-oxo-7,8-dihydroguanine when present within a clustered DNA damage site.
    Pearson CG; Shikazono N; Thacker J; O'Neill P
    Nucleic Acids Res; 2004; 32(1):263-70. PubMed ID: 14715924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An AP site can protect against the mutagenic potential of 8-oxoG when present within a tandem clustered site in E. coli.
    Cunniffe SM; Lomax ME; O'Neill P
    DNA Repair (Amst); 2007 Dec; 6(12):1839-49. PubMed ID: 17704010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excision of 8-oxoguanine within clustered damage by the yeast OGG1 protein.
    David-Cordonnier MH; Boiteux S; O'Neill P
    Nucleic Acids Res; 2001 Mar; 29(5):1107-13. PubMed ID: 11222760
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of nucleotide excision repair of Escherichia coli in repair of spontaneous and gamma-radiation-induced DNA damage in the lacZalpha gene.
    Kuipers GK; Slotman BJ; Poldervaart HA; van Vilsteren IM; Reitsma-Wijker CA; Lafleur MV
    Mutat Res; 2000 Jul; 460(2):117-25. PubMed ID: 10882852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Escherichia coli Nth and human hNTH1 DNA glycosylases are involved in removal of 8-oxoguanine from 8-oxoguanine/guanine mispairs in DNA.
    Matsumoto Y; Zhang QM; Takao M; Yasui A; Yonei S
    Nucleic Acids Res; 2001 May; 29(9):1975-81. PubMed ID: 11328882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clustered DNA damage, influence on damage excision by XRS5 nuclear extracts and Escherichia coli Nth and Fpg proteins.
    David-Cordonnier MH; Laval J; O'Neill P
    J Biol Chem; 2000 Apr; 275(16):11865-73. PubMed ID: 10766813
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiple DNA glycosylases for repair of 8-oxoguanine and their potential in vivo functions.
    Hazra TK; Hill JW; Izumi T; Mitra S
    Prog Nucleic Acid Res Mol Biol; 2001; 68():193-205. PubMed ID: 11554297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficiency of incision of an AP site within clustered DNA damage by the major human AP endonuclease.
    David-Cordonnier MH; Cunniffe SM; Hickson ID; O'Neill P
    Biochemistry; 2002 Jan; 41(2):634-42. PubMed ID: 11781104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair.
    Hill JW; Hazra TK; Izumi T; Mitra S
    Nucleic Acids Res; 2001 Jan; 29(2):430-8. PubMed ID: 11139613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites.
    Bjorâs M; Luna L; Johnsen B; Hoff E; Haug T; Rognes T; Seeberg E
    EMBO J; 1997 Oct; 16(20):6314-22. PubMed ID: 9321410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strand with mutagenic lesion is preferentially used as a template in the region of a bi-stranded clustered DNA damage site in Escherichia coli.
    Shikazono N; Akamatsu K
    Sci Rep; 2020 Jun; 10(1):9737. PubMed ID: 32546758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Processing of model single-strand breaks in phi X-174 RF transfecting DNA by Escherichia coli.
    Kow YW; Faundez G; Melamede RJ; Wallace SS
    Radiat Res; 1991 Jun; 126(3):357-66. PubMed ID: 1852023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.