BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 19540329)

  • 21. Identification of drugs inducing phospholipidosis by novel in vitro data.
    Muehlbacher M; Tripal P; Roas F; Kornhuber J
    ChemMedChem; 2012 Nov; 7(11):1925-34. PubMed ID: 22945602
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Monitoring the accumulation of fluorescently labeled phospholipids in cell cultures provides an accurate screen for drugs that induce phospholipidosis.
    Nioi P; Pardo ID; Snyder RD
    Drug Chem Toxicol; 2008; 31(4):515-28. PubMed ID: 18850360
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The phospholipidosis-lnducing potential of the chemopotentiating drug, N,N-Diethyl-2-[4-(phenylmethyl)phenoxy]ethanamine (DPPE, tesmilifene) correlates with its stimulation of phosphatidylserine synthesis and exposure on the plasma membrane in MCF-7 breast cancer cells.
    Xu FY; Queen G; Brandes L; Hatch GM
    Proc West Pharmacol Soc; 2007; 50():61-3. PubMed ID: 18605231
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of hydroxypyridinone iron chelators in combination with antimalarial drugs on the in vitro growth of Plasmodium falciparum.
    Pattanapanyasat K; Kotipun K; Yongvanitchit K; Hider RC; Kyle DE; Heppner DG; Walsh DS
    Southeast Asian J Trop Med Public Health; 2001 Mar; 32(1):64-9. PubMed ID: 11485097
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Basic 3-hydroxypyridin-4-ones: potential antimalarial agents.
    Dehkordi LS; Liu ZD; Hider RC
    Eur J Med Chem; 2008 May; 43(5):1035-47. PubMed ID: 17869385
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluating the risk of phospholipidosis using a new multidisciplinary pipeline approach.
    Goracci L; Buratta S; Urbanelli L; Ferrara G; Di Guida R; Emiliani C; Cross S
    Eur J Med Chem; 2015 Mar; 92():49-63. PubMed ID: 25544686
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potent antimalarial 4-pyridones with improved physico-chemical properties.
    Bueno JM; Manzano P; García MC; Chicharro J; Puente M; Lorenzo M; García A; Ferrer S; Gómez RM; Fraile MT; Lavandera JL; Fiandor JM; Vidal J; Herreros E; Gargallo-Viola D
    Bioorg Med Chem Lett; 2011 Sep; 21(18):5214-8. PubMed ID: 21824778
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Liposome electrokinetic chromatography based in vitro model for early screening of the drug-induced phospholipidosis risk.
    Wang T; Feng Y; Jin X; Fan X; Crommen J; Jiang Z
    J Pharm Biomed Anal; 2014 Aug; 96():263-71. PubMed ID: 24814828
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Membrane perturbing properties of natural phenolic and resorcinolic lipids.
    Stasiuk M; Kozubek A
    FEBS Lett; 2008 Oct; 582(25-26):3607-13. PubMed ID: 18834885
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and biological activity of new potential antimalarial: 1H-pyrazolo[3,4-b]pyridine derivatives.
    Dias LR; Freitas AC; Barreiro EJ; Goins DK; Nanayakkara D; McChesney JD
    Boll Chim Farm; 2000; 139(1):14-20. PubMed ID: 10829547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dithionite quenching rate measurement of the inside-outside membrane bilayer distribution of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-labeled phospholipids.
    Angeletti C; Nichols JW
    Biochemistry; 1998 Oct; 37(43):15114-9. PubMed ID: 9790674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antimalarial activity of 4-(5-trifluoromethyl-1H-pyrazol-1-yl)-chloroquine analogues.
    Cunico W; Cechinel CA; Bonacorso HG; Martins MA; Zanatta N; de Souza MV; Freitas IO; Soares RP; Krettli AU
    Bioorg Med Chem Lett; 2006 Feb; 16(3):649-53. PubMed ID: 16257205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biochemical and functional analysis of rat bronchoalveolar macrophages containing chemically induced phospholipid inclusions.
    Waites CR; Bugelski PJ; Badger AM
    Toxicol Appl Pharmacol; 1995 Feb; 130(2):316-21. PubMed ID: 7871542
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular responses associated with dibucaine-induced phospholipidosis.
    Peropadre A; Fernández Freire P; Herrero O; Pérez Martín JM; Hazen MJ
    Chem Res Toxicol; 2011 Feb; 24(2):185-92. PubMed ID: 21261262
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro assays and biomarkers for drug-induced phospholipidosis.
    Monteith DK; Morgan RE; Halstead B
    Expert Opin Drug Metab Toxicol; 2006 Oct; 2(5):687-96. PubMed ID: 17014389
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vitro validation of drug-induced phospholipidosis.
    Park S; Choi YJ; Lee BH
    J Toxicol Sci; 2012; 37(2):261-7. PubMed ID: 22467016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Establishment of an in vitro high-throughput screening assay for detecting phospholipidosis-inducing potential.
    Kasahara T; Tomita K; Murano H; Harada T; Tsubakimoto K; Ogihara T; Ohnishi S; Kakinuma C
    Toxicol Sci; 2006 Mar; 90(1):133-41. PubMed ID: 16338956
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cationic amphiphilic drug-induced phospholipidosis.
    Halliwell WH
    Toxicol Pathol; 1997; 25(1):53-60. PubMed ID: 9061852
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhaled cationic amphiphilic drug-induced pulmonary phospholipidosis in rats and dogs: time-course and dose-response of biomarkers of exposure and effect.
    Pauluhn J
    Toxicology; 2005 Feb; 207(1):59-72. PubMed ID: 15590122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling phospholipidosis induction: reliability and warnings.
    Goracci L; Ceccarelli M; Bonelli D; Cruciani G
    J Chem Inf Model; 2013 Jun; 53(6):1436-46. PubMed ID: 23692521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.