These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 19540357)

  • 81. Phospholipase D and phosphatidic acid enhance the hydrolysis of phospholipids in vesicles and in cell membranes by human secreted phospholipase A2.
    Kinkaid AR; Othman R; Voysey J; Wilton DC
    Biochim Biophys Acta; 1998 Feb; 1390(2):173-85. PubMed ID: 9507109
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Phosphatidic acid-producing enzymes regulating the synaptic vesicle cycle: Role for PLD?
    Barber CN; Huganir RL; Raben DM
    Adv Biol Regul; 2018 Jan; 67():141-147. PubMed ID: 28986032
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Physiological and pathophysiological roles for phospholipase D.
    Nelson RK; Frohman MA
    J Lipid Res; 2015 Dec; 56(12):2229-37. PubMed ID: 25926691
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Sorting nexin 17 (SNX17) links endosomal sorting to Eps15 homology domain protein 1 (EHD1)-mediated fission machinery.
    Dhawan K; Naslavsky N; Caplan S
    J Biol Chem; 2020 Mar; 295(12):3837-3850. PubMed ID: 32041776
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Phosphatidic acid produced by phospholipase D is required for hyphal cell-cell fusion and fungal-plant symbiosis.
    Hassing B; Eaton CJ; Winter D; Green KA; Brandt U; Savoian MS; Mesarich CH; Fleissner A; Scott B
    Mol Microbiol; 2020 Jun; 113(6):1101-1121. PubMed ID: 32022309
    [TBL] [Abstract][Full Text] [Related]  

  • 86. ADP-ribosylation-factor-regulated phospholipase D activity localizes to secretory vesicles and mobilizes to the plasma membrane following N-formylmethionyl-leucyl-phenylalanine stimulation of human neutrophils.
    Morgan CP; Sengelov H; Whatmore J; Borregaard N; Cockcroft S
    Biochem J; 1997 Aug; 325 ( Pt 3)(Pt 3):581-5. PubMed ID: 9271075
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Phospholipase D and phosphatidic acid-mediated generation of superoxide in Arabidopsis.
    Sang Y; Cui D; Wang X
    Plant Physiol; 2001 Aug; 126(4):1449-58. PubMed ID: 11500544
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Role of phospholipase d in g-protein coupled receptor function.
    Brandenburg LO; Pufe T; Koch T
    Membranes (Basel); 2014 Jul; 4(3):302-18. PubMed ID: 24995811
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Biochemical characterization of a Pseudomonas aeruginosa phospholipase D.
    Spencer C; Brown HA
    Biochemistry; 2015 Feb; 54(5):1208-18. PubMed ID: 25565226
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Phospholipid production and signaling by a plant defense inducer against
    Margaritopoulou T; Baira E; Anagnostopoulos C; Vichou KE; Markellou E
    Hortic Res; 2024 Sep; 11(9):uhae190. PubMed ID: 39247879
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Transcriptomics aids in uncovering the metabolic shifts and molecular machinery of Schizochytrium limacinum during biotransformation of hydrophobic substrates to docosahexaenoic acid.
    Mariam I; Krikigianni E; Rantzos C; Bettiga M; Christakopoulos P; Rova U; Matsakas L; Patel A
    Microb Cell Fact; 2024 Apr; 23(1):97. PubMed ID: 38561811
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Upregulated phospholipase D2 expression and activity is related to the metastatic properties of melanoma.
    Perez-Valle A; Ochoa B; Shah KN; Barreda-Gomez G; Astigarraga E; Boyano MD; Asumendi A
    Oncol Lett; 2022 May; 23(5):140. PubMed ID: 35340556
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Arabidopsis PLDζ1 and PLDζ2 localize to post-Golgi membrane compartments in a partially overlapping manner.
    Shimamura R; Ohashi Y; Taniguchi YY; Kato M; Tsuge T; Aoyama T
    Plant Mol Biol; 2022 Jan; 108(1-2):31-49. PubMed ID: 34601701
    [TBL] [Abstract][Full Text] [Related]  

  • 94. The BIR2/BIR3-Associated Phospholipase Dγ1 Negatively Regulates Plant Immunity.
    Schlöffel MA; Salzer A; Wan WL; van Wijk R; Del Corvo R; Šemanjski M; Symeonidi E; Slaby P; Kilian J; Maček B; Munnik T; Gust AA
    Plant Physiol; 2020 May; 183(1):371-384. PubMed ID: 32152212
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Mechanism of membrane fusion: protein-protein interaction and beyond.
    Wang H; Zhang C; Xiao H
    Int J Physiol Pathophysiol Pharmacol; 2019; 11(6):250-257. PubMed ID: 31993099
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Multiple Quality Control Mechanisms in the ER and TGN Determine Subcellular Dynamics and Salt-Stress Tolerance Function of KORRIGAN1.
    Nagashima Y; Ma Z; Liu X; Qian X; Zhang X; von Schaewen A; Koiwa H
    Plant Cell; 2020 Feb; 32(2):470-485. PubMed ID: 31852774
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Mammalian phospholipase D: Function, and therapeutics.
    McDermott MI; Wang Y; Wakelam MJO; Bankaitis VA
    Prog Lipid Res; 2020 Apr; 78():101018. PubMed ID: 31830503
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Halotropism requires phospholipase Dζ1-mediated modulation of cellular polarity of auxin transport carriers.
    Korver RA; van den Berg T; Meyer AJ; Galvan-Ampudia CS; Ten Tusscher KHWJ; Testerink C
    Plant Cell Environ; 2020 Jan; 43(1):143-158. PubMed ID: 31430837
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants.
    Takáč T; Novák D; Šamaj J
    Front Plant Sci; 2019; 10():362. PubMed ID: 31024579
    [TBL] [Abstract][Full Text] [Related]  

  • 100.
    Tan M; Li J; Ma F; Zhang X; Zhao Q; Cao X
    Front Neurosci; 2019; 13():116. PubMed ID: 30837833
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.