BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19540368)

  • 1. Functional role of a non-active site residue Trp(23) on the enzyme activity of Escherichia coli thioesterase I/protease I/lysophospholipase L(1).
    Lee LC; Chou YL; Chen HH; Lee YL; Shaw JF
    Biochim Biophys Acta; 2009 Oct; 1794(10):1467-73. PubMed ID: 19540368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate specificities of Escherichia coli thioesterase I/protease I/lysophospholipase L1 are governed by its switch loop movement.
    Lo YC; Lin SC; Shaw JF; Liaw YC
    Biochemistry; 2005 Feb; 44(6):1971-9. PubMed ID: 15697222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of Escherichia coli thioesterase I/protease I/lysophospholipase L1: consensus sequence blocks constitute the catalytic center of SGNH-hydrolases through a conserved hydrogen bond network.
    Lo YC; Lin SC; Shaw JF; Liaw YC
    J Mol Biol; 2003 Jul; 330(3):539-51. PubMed ID: 12842470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR studies of the hydrogen bonds involving the catalytic triad of Escherichia coli thioesterase/protease I.
    Tyukhtenko SI; Litvinchuk AV; Chang CF; Leu RJ; Shaw JF; Huang TH
    FEBS Lett; 2002 Sep; 528(1-3):203-6. PubMed ID: 12297305
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional role of catalytic triad and oxyanion hole-forming residues on enzyme activity of Escherichia coli thioesterase I/protease I/phospholipase L1.
    Lee LC; Lee YL; Leu RJ; Shaw JF
    Biochem J; 2006 Jul; 397(1):69-76. PubMed ID: 16515533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced preference for pi-bond containing substrates is correlated to Pro110 in the substrate-binding tunnel of Escherichia coli thioesterase I/protease I/lysophospholipase L(1).
    Lee LC; Liaw YC; Lee YL; Shaw JF
    Biochim Biophys Acta; 2007 Aug; 1774(8):959-67. PubMed ID: 17604237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential structural changes of Escherichia coli thioesterase/protease I in the serial formation of Michaelis and tetrahedral complexes with diethyl p-nitrophenyl phosphate.
    Tyukhtenko SI; Litvinchuk AV; Chang CF; Lo YC; Lee SJ; Shaw JF; Liaw YC; Huang TH
    Biochemistry; 2003 Jul; 42(27):8289-97. PubMed ID: 12846577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD.
    Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct NMR resonance assignments of the active site histidine residue in Escherichia coli thioesterase I/protease I/lysophospholipase L1.
    Wu WJ; Tyukhtenko SI; Huang TH
    Magn Reson Chem; 2006 Nov; 44(11):1037-40. PubMed ID: 16972310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Escherichia coli pldC gene encoding lysophospholipase L(1) is identical to the apeA and tesA genes encoding protease I and thioesterase I, respectively.
    Karasawa K; Yokoyama K; Setaka M; Nojima S
    J Biochem; 1999 Aug; 126(2):445-8. PubMed ID: 10423542
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid residues involved in substrate recognition of the Escherichia coli Orf135 protein.
    Iida E; Satou K; Mishima M; Kojima C; Harashima H; Kamiya H
    Biochemistry; 2005 Apr; 44(15):5683-9. PubMed ID: 15823026
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a gem-diol reaction intermediate in bacterial C-C hydrolase enzymes BphD and MhpC from 13C NMR spectroscopy.
    Li JJ; Li C; Blindauer CA; Bugg TD
    Biochemistry; 2006 Oct; 45(41):12461-9. PubMed ID: 17029401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of a type II thioesterase associated with nonribosomal peptide synthesis.
    Linne U; Schwarzer D; Schroeder GN; Marahiel MA
    Eur J Biochem; 2004 Apr; 271(8):1536-45. PubMed ID: 15066179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exhaustive mutagenesis of six secondary active-site residues in Escherichia coli chorismate mutase shows the importance of hydrophobic side chains and a helix N-capping position for stability and catalysis.
    Lassila JK; Keeffe JR; Kast P; Mayo SL
    Biochemistry; 2007 Jun; 46(23):6883-91. PubMed ID: 17506527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed mutagenesis of the greasy slide aromatic residues within the LamB (maltoporin) channel of Escherichia coli: effect on ion and maltopentaose transport.
    Denker K; Orlik F; Schiffler B; Benz R
    J Mol Biol; 2005 Sep; 352(3):534-50. PubMed ID: 16095613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stability for function trade-offs in the enolase superfamily "catalytic module".
    Nagatani RA; Gonzalez A; Shoichet BK; Brinen LS; Babbitt PC
    Biochemistry; 2007 Jun; 46(23):6688-95. PubMed ID: 17503785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of surface loop insertions and disulfide bond in the stabilization of thermophilic WF146 protease.
    Bian Y; Liang X; Fang N; Tang XF; Tang B; Shen P; Peng Z
    FEBS Lett; 2006 Oct; 580(25):6007-14. PubMed ID: 17052711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of penicillin acylase enzyme-substrate complexes: structural insights into the catalytic mechanism.
    McVey CE; Walsh MA; Dodson GG; Wilson KS; Brannigan JA
    J Mol Biol; 2001 Oct; 313(1):139-50. PubMed ID: 11601852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution to activity of histidine-aromatic, amide-aromatic, and aromatic-aromatic interactions in the extended catalytic site of cysteine proteinases.
    Brömme D; Bonneau PR; Purisima E; Lachance P; Hajnik S; Thomas DY; Storer AC
    Biochemistry; 1996 Apr; 35(13):3970-9. PubMed ID: 8672429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Backbone dynamics of Escherichia coli thioesterase/protease I: evidence of a flexible active-site environment for a serine protease.
    Huang YT; Liaw YC; Gorbatyuk VY; Huang TH
    J Mol Biol; 2001 Apr; 307(4):1075-90. PubMed ID: 11286557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.