These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 19540370)

  • 1. A bilayered elastomeric scaffold for tissue engineering of small diameter vascular grafts.
    Soletti L; Hong Y; Guan J; Stankus JJ; El-Kurdi MS; Wagner WR; Vorp DA
    Acta Biomater; 2010 Jan; 6(1):110-22. PubMed ID: 19540370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel polymeric fibrous microstructured biodegradable small-caliber tubular scaffold for cardiovascular tissue engineering.
    Dimopoulos A; Markatos DN; Mitropoulou A; Panagiotopoulos I; Koletsis E; Mavrilas D
    J Mater Sci Mater Med; 2021 Mar; 32(2):21. PubMed ID: 33649939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilayered scaffold for engineering cellularized blood vessels.
    Ju YM; Choi JS; Atala A; Yoo JJ; Lee SJ
    Biomaterials; 2010 May; 31(15):4313-21. PubMed ID: 20188414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun PET/PCL small diameter nanofibrous conduit for biomedical application.
    Rahmati Nejad M; Yousefzadeh M; Solouk A
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110692. PubMed ID: 32204006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tissue engineered vessel from a biodegradable electrospun scaffold stimulated with mechanical stretch.
    Hodge J; Quint C
    Biomed Mater; 2020 Jul; 15(5):055006. PubMed ID: 32348975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crosslinked urethane doped polyester biphasic scaffolds: Potential for in vivo vascular tissue engineering.
    Dey J; Xu H; Nguyen KT; Yang J
    J Biomed Mater Res A; 2010 Nov; 95(2):361-70. PubMed ID: 20629026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications.
    Stefani I; Cooper-White JJ
    Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Moldable elastomeric polyester-carbon nanotube scaffolds for cardiac tissue engineering.
    Ahadian S; Davenport Huyer L; Estili M; Yee B; Smith N; Xu Z; Sun Y; Radisic M
    Acta Biomater; 2017 Apr; 52():81-91. PubMed ID: 27940161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a tissue-engineered vascular graft combining a biodegradable scaffold, muscle-derived stem cells and a rotational vacuum seeding technique.
    Nieponice A; Soletti L; Guan J; Deasy BM; Huard J; Wagner WR; Vorp DA
    Biomaterials; 2008 Mar; 29(7):825-33. PubMed ID: 18035412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel biphasic elastomeric scaffold for small-diameter blood vessel tissue engineering.
    Yang J; Motlagh D; Webb AR; Ameer GA
    Tissue Eng; 2005; 11(11-12):1876-86. PubMed ID: 16411834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elastomeric PGS scaffolds in arterial tissue engineering.
    Lee KW; Wang Y
    J Vis Exp; 2011 Apr; (50):. PubMed ID: 21505410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Degradation-induced changes of mechanical properties of an electro-spun polyester-urethane scaffold for soft tissue regeneration.
    Krynauw H; Bruchmüller L; Bezuidenhout D; Zilla P; Franz T
    J Biomed Mater Res B Appl Biomater; 2011 Nov; 99(2):359-68. PubMed ID: 21948379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pericyte-based human tissue engineered vascular grafts.
    He W; Nieponice A; Soletti L; Hong Y; Gharaibeh B; Crisan M; Usas A; Peault B; Huard J; Wagner WR; Vorp DA
    Biomaterials; 2010 Nov; 31(32):8235-44. PubMed ID: 20684982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabricating poly(1,8-octanediol citrate) elastomer based fibrous mats via electrospinning for soft tissue engineering scaffold.
    Zhu L; Zhang Y; Ji Y
    J Mater Sci Mater Med; 2017 Jun; 28(6):93. PubMed ID: 28510114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model.
    Nieponice A; Soletti L; Guan J; Hong Y; Gharaibeh B; Maul TM; Huard J; Wagner WR; Vorp DA
    Tissue Eng Part A; 2010 Apr; 16(4):1215-23. PubMed ID: 19895206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A dynamically cultured collagen/cells-incorporated elastic scaffold for small-diameter vascular grafts.
    Park IS; Kim YH; Jung Y; Kim SH; Kim SH
    J Biomater Sci Polym Ed; 2012; 23(14):1807-20. PubMed ID: 21943800
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functionally graded electrospun scaffolds with tunable mechanical properties for vascular tissue regeneration.
    Thomas V; Zhang X; Catledge SA; Vohra YK
    Biomed Mater; 2007 Dec; 2(4):224-32. PubMed ID: 18458479
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property.
    Wang W; Hu J; He C; Nie W; Feng W; Qiu K; Zhou X; Gao Y; Wang G
    J Biomed Mater Res A; 2015 May; 103(5):1784-97. PubMed ID: 25196988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modulus of elasticity of randomly and aligned polymeric scaffolds with fiber size dependency.
    Wang J; Yuan B; Han RPS
    J Mech Behav Biomed Mater; 2018 Jan; 77():314-320. PubMed ID: 28961518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of corrugated structure on the collapsing of the small-diameter vascular scaffolds.
    Akbari S; Mohebbi-Kalhori D; Samimi A
    J Biomater Appl; 2020 May; 34(10):1355-1367. PubMed ID: 32148156
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 21.