BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 19540547)

  • 1. Oxidation of iodide and iodine on birnessite (delta-MnO2) in the pH range 4-8.
    Allard S; von Gunten U; Sahli E; Nicolau R; Gallard H
    Water Res; 2009 Aug; 43(14):3417-26. PubMed ID: 19540547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of iodinated organic compounds by oxidation of iodide-containing waters with manganese dioxide.
    Gallard H; Allard S; Nicolau R; von Gunten U; Croué JP
    Environ Sci Technol; 2009 Sep; 43(18):7003-9. PubMed ID: 19806734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and Mechanistic Aspects of the Reactions of Iodide and Hypoiodous Acid with Permanganate: Oxidation and Disproportionation.
    Zhao X; Salhi E; Liu H; Ma J; von Gunten U
    Environ Sci Technol; 2016 Apr; 50(8):4358-65. PubMed ID: 27003721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overall water splitting under visible light through a two-step photoexcitation between TaON and WO3 in the presence of an iodate-iodide shuttle redox mediator.
    Abe R; Higashi M; Domen K
    ChemSusChem; 2011 Feb; 4(2):228-37. PubMed ID: 21275062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iodate and iodo-trihalomethane formation during chlorination of iodide-containing waters: role of bromide.
    Criquet J; Allard S; Salhi E; Joll CA; Heitz A; von Gunten U
    Environ Sci Technol; 2012 Jul; 46(13):7350-7. PubMed ID: 22667818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of iodide and iodate for adsorption-desorption characteristics and bioavailability in three types of soil.
    Hong C; Weng H; Jilani G; Yan A; Liu H; Xue Z
    Biol Trace Elem Res; 2012 May; 146(2):262-71. PubMed ID: 22038267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The formation of iodate as a reason for the decrease of efficiency of iodine containing disinfectants (author's transl)].
    Gottardi W
    Zentralbl Bakteriol Mikrobiol Hyg B; 1981; 172(6):498-507. PubMed ID: 7257653
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ozonation of iodide-containing waters: selective oxidation of iodide to iodate with simultaneous minimization of bromate and I-THMs.
    Allard S; Nottle CE; Chan A; Joll C; von Gunten U
    Water Res; 2013 Apr; 47(6):1953-60. PubMed ID: 23351431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MnO
    Du J; Kim K; Son S; Pan D; Kim S; Choi W
    Environ Sci Technol; 2023 Apr; 57(13):5317-5326. PubMed ID: 36952586
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abiotic formation of methyl iodide on synthetic birnessite: a mechanistic study.
    Allard S; Gallard H
    Sci Total Environ; 2013 Oct; 463-464():169-75. PubMed ID: 23803501
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chlorination of iodide-containing waters in the presence of CuO: formation of periodate.
    Liu C; Salhi E; Croué JP; von Gunten U
    Environ Sci Technol; 2014 Nov; 48(22):13173-80. PubMed ID: 25313794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The transition from pH waves to iodine waves in the iodate/sulfite/thiosulfate reaction-diffusion system.
    Gao Q; Xie R
    Chemphyschem; 2008 Jun; 9(8):1153-7. PubMed ID: 18433072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid oxidation of iodide and hypoiodous acid with ferrate and no formation of iodoform and monoiodoacetic acid in the ferrate/I
    Wang X; Liu Y; Huang Z; Wang L; Wang Y; Li Y; Li J; Qi J; Ma J
    Water Res; 2018 Nov; 144():592-602. PubMed ID: 30092505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of physicochemical properties of various soil types on iodide and iodate sorption.
    Duborská E; Urík M; Bujdoš M; Matulová M
    Chemosphere; 2019 Jan; 214():168-175. PubMed ID: 30265923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Species transformation and removal mechanism of various iodine species at the Bi
    Wang N; Xiong R; Zhang G; Liu R; He X; Huang S; Liu H; Qu J
    Water Res; 2022 Sep; 223():118965. PubMed ID: 35973251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption of iodine in soils: insight from selective sequential extractions and X-ray absorption spectroscopy.
    Köhler F; Riebe B; Scheinost AC; König C; Hölzer A; Walther C
    Environ Sci Pollut Res Int; 2019 Aug; 26(23):23850-23860. PubMed ID: 31214887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abiotic formation of organoiodine compounds by manganese dioxide induced iodination of dissolved organic matter.
    Hao Z; Wang J; Yin Y; Cao D; Liu J
    Environ Pollut; 2018 May; 236():672-679. PubMed ID: 29438953
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics and mechanism of the oxidation of N-acetyl homocysteine thiolactone with aqueous iodine and iodate.
    Sexton A; Mbiya W; Morakinyo MK; Simoyi RH
    J Phys Chem A; 2013 Dec; 117(48):12693-702. PubMed ID: 24164347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Formation of methyl iodide on a natural manganese oxide.
    Allard S; Gallard H; Fontaine C; Croué JP
    Water Res; 2010 Aug; 44(15):4623-9. PubMed ID: 20580399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A comparative study of oxidation of Cr(III) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite).
    Dai R; Liu J; Yu C; Sun R; Lan Y; Mao JD
    Chemosphere; 2009 Jul; 76(4):536-41. PubMed ID: 19342077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.