BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

506 related articles for article (PubMed ID: 19540547)

  • 21. Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate.
    Zhao X; Ma J; von Gunten U
    Water Res; 2017 Aug; 119():126-135. PubMed ID: 28454008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Decolorization of methylene blue by delta-MnO2-coated montmorillonite complexes: emphasizing redox reactivity of Mn-oxide coatings.
    Zhu MX; Wang Z; Xu SH; Li T
    J Hazard Mater; 2010 Sep; 181(1-3):57-64. PubMed ID: 20510506
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uptake mechanism for iodine species to black carbon.
    Choung S; Um W; Kim M; Kim MG
    Environ Sci Technol; 2013 Sep; 47(18):10349-55. PubMed ID: 23941630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidation of β-blockers by birnessite: Kinetics, mechanism and effect of metal ions.
    Chen Y; Lu X; Liu L; Wan D; Chen H; Zhou D; Sharma VK
    Chemosphere; 2018 Mar; 194():588-594. PubMed ID: 29241133
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Iodide and iodate (129I and 127I) in surface water of the Baltic Sea, Kattegat and Skagerrak.
    Hansen V; Yi P; Hou X; Aldahan A; Roos P; Possnert G
    Sci Total Environ; 2011 Dec; 412-413():296-303. PubMed ID: 22033356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of ozonation on the speciation of dissolved iodine in artificial seawater.
    Sherrill J; Whitaker BR; Wong GT
    J Zoo Wildl Med; 2004 Sep; 35(3):347-55. PubMed ID: 15526890
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Zinc adsorption effects on arsenite oxidation kinetics at the birnessite-water interface.
    Power LE; Arai Y; Sparks DL
    Environ Sci Technol; 2005 Jan; 39(1):181-7. PubMed ID: 15667093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence turn-on detection of iodide, iodate and total iodine using fluorescein-5-isothiocyanate-modified gold nanoparticles.
    Chen YM; Cheng TL; Tseng WL
    Analyst; 2009 Oct; 134(10):2106-12. PubMed ID: 19768221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel approach for the simultaneous determination of iodide, iodate and organo-iodide for 127I and 129I in environmental samples using gas chromatography-mass spectrometry.
    Zhang S; Schwehr KA; Ho YF; Xu C; Roberts KA; Kaplan DI; Brinkmeyer R; Yeager CM; Santschi PH
    Environ Sci Technol; 2010 Dec; 44(23):9042-8. PubMed ID: 21069952
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synchronous Moderate Oxidation and Adsorption on the Surface of γ-MnO
    Wang N; Zhang G; Xiong R; Liu R; Liu H; Qu J
    Environ Sci Technol; 2022 Jul; 56(13):9417-9427. PubMed ID: 35737437
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation of iodinated disinfection by-products during oxidation of iodide-containing waters with chlorine dioxide.
    Ye T; Xu B; Lin YL; Hu CY; Lin L; Zhang TY; Gao NY
    Water Res; 2013 Jun; 47(9):3006-14. PubMed ID: 23561492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transformation of Iodide by Carbon Nanotube Activated Peroxydisulfate and Formation of Iodoorganic Compounds in the Presence of Natural Organic Matter.
    Guan C; Jiang J; Luo C; Pang S; Jiang C; Ma J; Jin Y; Li J
    Environ Sci Technol; 2017 Jan; 51(1):479-487. PubMed ID: 27982571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Laccase-catalysed iodide oxidation in presence of methyl syringate.
    Kulys J; Bratkovskaja I; Vidziunaite R
    Biotechnol Bioeng; 2005 Oct; 92(1):124-8. PubMed ID: 16080184
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reductive transformation of birnessite by aqueous Mn(II).
    Elzinga EJ
    Environ Sci Technol; 2011 Aug; 45(15):6366-72. PubMed ID: 21675764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Speciation of ¹²⁹I in sea, lake and rain waters.
    Lehto J; Räty T; Hou X; Paatero J; Aldahan A; Possnert G; Flinkman J; Kankaanpää H
    Sci Total Environ; 2012 Mar; 419():60-7. PubMed ID: 22285065
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Co2+-exchange mechanism of birnessite and its application for the removal of Pb2+ and As(III).
    Yin H; Liu F; Feng X; Liu M; Tan W; Qiu G
    J Hazard Mater; 2011 Nov; 196():318-26. PubMed ID: 21963172
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of iodide on transformation of phenolic compounds by nonradical activation of peroxydisulfate in the presence of carbon nanotube: Kinetics, impacting factors, and formation of iodinated aromatic products.
    Guan C; Jiang J; Pang S; Luo C; Yang Y; Ma J; Yu J; Zhao X
    Chemosphere; 2018 Oct; 208():559-568. PubMed ID: 29890494
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon.
    Ikari M; Matsui Y; Suzuki Y; Matsushita T; Shirasaki N
    Water Res; 2015 Jan; 68():227-37. PubMed ID: 25462731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into the photochemical transformation of iodine in aqueous systems: humic acid photosensitized reduction of iodate.
    Saunders RW; Kumar R; MacDonald SM; Plane JM
    Environ Sci Technol; 2012 Nov; 46(21):11854-61. PubMed ID: 23038990
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of bromide/iodide concentration and ratio on iodinated trihalomethane formation and speciation.
    Jones DB; Saglam A; Song H; Karanfil T
    Water Res; 2012 Jan; 46(1):11-20. PubMed ID: 22078225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.