BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 19540637)

  • 1. Photolytic degradation of methyl-parathion and fenitrothion in ice and water: implications for cold environments.
    Weber J; Kurková R; Klánová J; Klán P; Halsall CJ
    Environ Pollut; 2009 Dec; 157(12):3308-13. PubMed ID: 19540637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparative study on the aqueous photodegradation of two organophosphorus pesticides under simulated and natural sunlight.
    Weber J; Halsall CJ; Wargent JJ; Paul ND
    J Environ Monit; 2009 Mar; 11(3):654-9. PubMed ID: 19280044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photodegradation of organophosphorus pesticides in honey medium.
    Yuan Z; Yao J; Liu H; Han J; Trebše P
    Ecotoxicol Environ Saf; 2014 Oct; 108():84-8. PubMed ID: 25042249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study of the degradation of organophosphorus pesticides in river waters and the identification of their degradation products by chromatography coupled with mass spectrometry.
    Zhao X; Hwang HM
    Arch Environ Contam Toxicol; 2009 May; 56(4):646-53. PubMed ID: 18752016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decomposition of 14C-fenitrothion under the influence of UV and sunlight under tropical and subtropical conditions.
    Zayed SM; Mahdy F
    Chemosphere; 2008 Feb; 70(9):1653-9. PubMed ID: 17822740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of mixed pesticides from drinking water system by photodegradation using suspended and immobilized TiO2.
    Senthilnathan J; Philip L
    J Environ Sci Health B; 2009 Mar; 44(3):262-70. PubMed ID: 19280479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photodegradation and volatility of pesticides: chamber experiments.
    Kromer T; Ophoff H; Stork A; Führ F
    Environ Sci Pollut Res Int; 2004; 11(2):107-20. PubMed ID: 15108858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and sensitive determination of 4-nitrophenol, 3-methyl-4-nitrophenol, 4,6-dinitro-o-cresol, parathion-methyl, fenitrothion, and parathion-ethyl by liquid chromatography with electrochemical detection.
    Galeano-Díaz T; Guiberteau-Cabanillas A; Mora-Díez N; Parrilla-Vázquez P; Salinas-López F
    J Agric Food Chem; 2000 Oct; 48(10):4508-13. PubMed ID: 11052691
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell surface display of organophosphorus hydrolase for sensitive spectrophotometric detection of p-nitrophenol substituted organophosphates.
    Tang X; Liang B; Yi T; Manco G; Palchetti I; Liu A
    Enzyme Microb Technol; 2014 Feb; 55():107-12. PubMed ID: 24411452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organophosphorus pesticide ozonation and formation of oxon intermediates.
    Wu J; Lan C; Chan GY
    Chemosphere; 2009 Aug; 76(9):1308-14. PubMed ID: 19539977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photochemical nitro-nitrite rearrangement in methyl parathion decay under tropical conditions.
    Araújo TM; Canela MC; Miranda PC
    J Environ Sci Health B; 2013; 48(4):251-9. PubMed ID: 23374042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodegradation of Organophosphorus Pesticides in Honey Medium by Solar Light Irradiation.
    Bouhala A; Lahmar H; Benamira M; Moussi A; Trari M
    Bull Environ Contam Toxicol; 2020 Jun; 104(6):792-798. PubMed ID: 32335690
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zn2+-catalyzed methanolysis of phosphate triesters: a process for catalytic degradation of the organophosphorus pesticides paraoxon and fenitrothion.
    Desloges W; Neverov AA; Brown RS
    Inorg Chem; 2004 Oct; 43(21):6752-61. PubMed ID: 15476375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodegradation of methyl parathion and p-nitrophenol: evidence for the presence of a p-nitrophenol 2-hydroxylase in a Gram-negative Serratia sp. strain DS001.
    Pakala SB; Gorla P; Pinjari AB; Krovidi RK; Baru R; Yanamandra M; Merrick M; Siddavattam D
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1452-62. PubMed ID: 17043828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photodegradation of fenitrothion and parathion in tomato epicuticular waxes.
    Fukushima M; Katagi T
    J Agric Food Chem; 2006 Jan; 54(2):474-9. PubMed ID: 16417307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation mechanism and the toxicity assessment in TiO2 photocatalysis and photolysis of parathion.
    Kim TS; Kim JK; Choi K; Stenstrom MK; Zoh KD
    Chemosphere; 2006 Feb; 62(6):926-33. PubMed ID: 16051312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of chlorothalonil, methyl parathion and methamidophos from water by the Fenton reaction.
    Gutiérrez RF; Santiesteban A; Cruz-López L; Bello-Mendoza R
    Environ Technol; 2007 Mar; 28(3):267-72. PubMed ID: 17432379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-depth biochemical identification of a novel methyl parathion hydrolase from Azohydromonas australica and its high effectiveness in the degradation of various organophosphorus pesticides.
    Zhao S; Xu W; Zhang W; Wu H; Guang C; Mu W
    Bioresour Technol; 2021 Mar; 323():124641. PubMed ID: 33429316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic analysis of Burkholderia zhejiangensis CEIB S4-3 during the methyl parathion degradation process.
    Castrejón-Godínez ML; Tovar-Sánchez E; Ortiz-Hernández ML; Encarnación-Guevara S; Martínez-Batallar ÁG; Hernández-Ortiz M; Sánchez-Salinas E; Rodríguez A; Mussali-Galante P
    Pestic Biochem Physiol; 2022 Oct; 187():105197. PubMed ID: 36127069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sonocatalytic degradation of methyl parathion in the presence of nanometer and ordinary anatase titanium dioxide catalysts and comparison of their sonocatalytic abilities.
    Wang J; Pan Z; Zhang Z; Zhang X; Wen F; Ma T; Jiang Y; Wang L; Xu L; Kang P
    Ultrason Sonochem; 2006 Sep; 13(6):493-500. PubMed ID: 16413995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.