BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 19540949)

  • 1. Red blood cell (RBC) membrane proteomics--Part I: Proteomics and RBC physiology.
    Pasini EM; Lutz HU; Mann M; Thomas AW
    J Proteomics; 2010 Jan; 73(3):403-20. PubMed ID: 19540949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red blood cell proteomics.
    Pasini EM; Mann M; Thomas AW
    Transfus Clin Biol; 2010 Sep; 17(3):151-64. PubMed ID: 20655788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red blood cell (RBC) membrane proteomics--Part II: Comparative proteomics and RBC patho-physiology.
    Pasini EM; Lutz HU; Mann M; Thomas AW
    J Proteomics; 2010 Jan; 73(3):421-35. PubMed ID: 19622400
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges for red blood cell biomarker discovery through proteomics.
    Barasa B; Slijper M
    Biochim Biophys Acta; 2014 May; 1844(5):1003-10. PubMed ID: 24129076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red Blood Cells in Clinical Proteomics.
    Carvalho AS; Rodriguez MS; Matthiesen R
    Methods Mol Biol; 2017; 1619():173-181. PubMed ID: 28674885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The proteome of red cell membranes and vesicles during storage in blood bank conditions.
    Bosman GJ; Lasonder E; Luten M; Roerdinkholder-Stoelwinder B; Novotný VM; Bos H; De Grip WJ
    Transfusion; 2008 May; 48(5):827-35. PubMed ID: 18346024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress-associated shape transformation and membrane proteome remodeling in erythrocytes of end stage renal disease patients on hemodialysis.
    Antonelou MH; Kriebardis AG; Velentzas AD; Kokkalis AC; Georgakopoulou SC; Papassideri IS
    J Proteomics; 2011 Oct; 74(11):2441-52. PubMed ID: 21515423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomics-based identification of hypoxia-sensitive membrane-bound proteins in rat erythrocytes.
    Sidorenko SV; Ziganshin RH; Luneva OG; Deev LI; Alekseeva NV; Maksimov GV; Grygorczyk R; Orlov SN
    J Proteomics; 2018 Jul; 184():25-33. PubMed ID: 29929038
    [No Abstract]   [Full Text] [Related]  

  • 9. Quantitative comparative analysis of human erythrocyte surface proteins between individuals from two genetically distinct populations.
    Ravenhill BJ; Kanjee U; Ahouidi A; Nobre L; Williamson J; Goldberg JM; Antrobus R; Dieye T; Duraisingh MT; Weekes MP
    Commun Biol; 2019; 2():350. PubMed ID: 31552303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Analysis of Human Red Blood Cell Proteome.
    Bryk AH; Wiśniewski JR
    J Proteome Res; 2017 Aug; 16(8):2752-2761. PubMed ID: 28689405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-depth analysis of cysteine oxidation by the RBC proteome: advantage of peroxiredoxin II knockout mice.
    Yang HY; Kwon J; Choi HI; Park SH; Yang U; Park HR; Ren L; Chung KJ; Kim YU; Park BJ; Jeong SH; Lee TH
    Proteomics; 2012 Jan; 12(1):101-12. PubMed ID: 22113967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-depth analysis of the membrane and cytosolic proteome of red blood cells.
    Pasini EM; Kirkegaard M; Mortensen P; Lutz HU; Thomas AW; Mann M
    Blood; 2006 Aug; 108(3):791-801. PubMed ID: 16861337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative erythrocyte membrane proteome analysis with Blue-native/SDS PAGE.
    van Gestel RA; van Solinge WW; van der Toorn HW; Rijksen G; Heck AJ; van Wijk R; Slijper M
    J Proteomics; 2010 Jan; 73(3):456-65. PubMed ID: 19778645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The proteomics and interactomics of human erythrocytes.
    Goodman SR; Daescu O; Kakhniashvili DG; Zivanic M
    Exp Biol Med (Maywood); 2013 May; 238(5):509-18. PubMed ID: 23856902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extraction methods of red blood cell membrane proteins for Multidimensional Protein Identification Technology (MudPIT) analysis.
    De Palma A; Roveri A; Zaccarin M; Benazzi L; Daminelli S; Pantano G; Buttarello M; Ursini F; Gion M; Mauri PL
    J Chromatogr A; 2010 Aug; 1217(33):5328-36. PubMed ID: 20621298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptides from the Plasmodium falciparum STEVOR putative protein bind with high affinity to normal human red blood cells.
    García JE; Puentes A; Curtidor H; Vera R; Rodriguez L; Valbuena J; López R; Ocampo M; Cortés J; Vanegas M; Rosas J; Reyes C; Patarroyo ME
    Peptides; 2005 Jul; 26(7):1133-43. PubMed ID: 15949631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Agglutination of like-charged red blood cells induced by binding of beta2-glycoprotein I to outer cell surface.
    Lokar M; Urbanija J; Frank M; Hägerstrand H; Rozman B; Bobrowska-Hägerstrand M; Iglic A; Kralj-Iglic V
    Bioelectrochemistry; 2008 Aug; 73(2):110-6. PubMed ID: 18495556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alterations of the erythrocyte membrane proteome and cytoskeleton network during storage--a possible tool to identify autologous blood transfusion.
    Nikolovski Z; De La Torre C; Chiva C; Borràs E; Andreu D; Ventura R; Segura J
    Drug Test Anal; 2012 Nov; 4(11):882-90. PubMed ID: 22544525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of membrane and cytosolic proteins of erythrocytes.
    Alvarez-Llamas G; de la Cuesta F; Barderas MG; Zubiri I; Posada-Ayala M; Vivanco F
    Methods Mol Biol; 2013; 1000():71-80. PubMed ID: 23585085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in qualitative and quantitative plant membrane proteomics.
    Kota U; Goshe MB
    Phytochemistry; 2011 Jul; 72(10):1040-60. PubMed ID: 21367437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.