These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
538 related articles for article (PubMed ID: 19541411)
1. Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L. Najeeb U; Xu L; Ali S; Jilani G; Gong HJ; Shen WQ; Zhou WJ J Hazard Mater; 2009 Oct; 170(2-3):1156-63. PubMed ID: 19541411 [TBL] [Abstract][Full Text] [Related]
2. Insights into cadmium induced physiological and ultra-structural disorders in Juncus effusus L. and its remediation through exogenous citric acid. Najeeb U; Jilani G; Ali S; Sarwar M; Xu L; Zhou W J Hazard Mater; 2011 Feb; 186(1):565-74. PubMed ID: 21159423 [TBL] [Abstract][Full Text] [Related]
3. Enhanced phytoextraction: II. Effect of EDTA and citric acid on heavy metal uptake by Helianthus annuus from a calcareous soil. Lesage E; Meers E; Vervaeke P; Lamsal S; Hopgood M; Tack FM; Verloo MG Int J Phytoremediation; 2005; 7(2):143-52. PubMed ID: 16128445 [TBL] [Abstract][Full Text] [Related]
4. Lead induced changes in the growth and antioxidant metabolism of the lead accumulating and non-accumulating ecotypes of Sedum alfredii. Liu D; Li TQ; Jin XF; Yang XE; Islam E; Mahmood Q J Integr Plant Biol; 2008 Feb; 50(2):129-40. PubMed ID: 18713434 [TBL] [Abstract][Full Text] [Related]
5. Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Reddy AM; Kumar SG; Jyothsnakumari G; Thimmanaik S; Sudhakar C Chemosphere; 2005 Jun; 60(1):97-104. PubMed ID: 15910908 [TBL] [Abstract][Full Text] [Related]
6. Effects of exogenous organic chelators on phytochelatins production and its relationship with cadmium toxicity in wheat (Triticum aestivum L.) under cadmium stress. Sun Q; Wang XR; Ding SM; Yuan XF Chemosphere; 2005 Jun; 60(1):22-31. PubMed ID: 15910898 [TBL] [Abstract][Full Text] [Related]
7. Physiological and biochemical responses to high Mn concentrations in two contrasting Populus cathayana populations. Lei Y; Korpelainen H; Li C Chemosphere; 2007 Jun; 68(4):686-94. PubMed ID: 17346769 [TBL] [Abstract][Full Text] [Related]
8. Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Sekmen AH; Türkan I; Takio S Physiol Plant; 2007 Nov; 131(3):399-411. PubMed ID: 18251879 [TBL] [Abstract][Full Text] [Related]
9. Nitrilotriacetate- and citric acid-assisted phytoextraction of cadmium by Indian mustard (Brassica juncea (L.) Czernj, Brassicaceae). Quartacci MF; Baker AJ; Navari-Izzo F Chemosphere; 2005 Jun; 59(9):1249-55. PubMed ID: 15857636 [TBL] [Abstract][Full Text] [Related]
11. Antioxidant responses of chickpea plants subjected to boron toxicity. Ardic M; Sekmen AH; Tokur S; Ozdemir F; Turkan I Plant Biol (Stuttg); 2009 May; 11(3):328-38. PubMed ID: 19470104 [TBL] [Abstract][Full Text] [Related]
12. Silicon-mediated alleviation of Mn toxicity in Cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Shi Q; Bao Z; Zhu Z; He Y; Qian Q; Yu J Phytochemistry; 2005 Jul; 66(13):1551-9. PubMed ID: 15963540 [TBL] [Abstract][Full Text] [Related]
13. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. Song A; Li Z; Zhang J; Xue G; Fan F; Liang Y J Hazard Mater; 2009 Dec; 172(1):74-83. PubMed ID: 19616891 [TBL] [Abstract][Full Text] [Related]
14. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals. Tassi E; Pouget J; Petruzzelli G; Barbafieri M Chemosphere; 2008 Mar; 71(1):66-73. PubMed ID: 18037469 [TBL] [Abstract][Full Text] [Related]
15. Citric acid enhances the phytoextraction of chromium, plant growth, and photosynthesis by alleviating the oxidative damages in Brassica napus L. Afshan S; Ali S; Bharwana SA; Rizwan M; Farid M; Abbas F; Ibrahim M; Mehmood MA; Abbasi GH Environ Sci Pollut Res Int; 2015 Aug; 22(15):11679-89. PubMed ID: 25850739 [TBL] [Abstract][Full Text] [Related]
16. Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens. Santos FS; Hernández-Allica J; Becerril JM; Amaral-Sobrinho N; Mazur N; Garbisu C Chemosphere; 2006 Sep; 65(1):43-50. PubMed ID: 16624375 [TBL] [Abstract][Full Text] [Related]
17. Co-application of 6-ketone type brassinosteroid and metal chelator alleviates cadmium toxicity in B. juncea L. Kaur R; Yadav P; Thukral AK; Walia A; Bhardwaj R Environ Sci Pollut Res Int; 2017 Jan; 24(1):685-700. PubMed ID: 27752946 [TBL] [Abstract][Full Text] [Related]
18. Phytoremediation of Mn-contaminated paddy soil by two hyperaccumulators (Phytolacca americana and Polygonum hydropiper) aided with citric acid. Yang QW; Ke HM; Liu SJ; Zeng Q Environ Sci Pollut Res Int; 2018 Sep; 25(26):25933-25941. PubMed ID: 29961905 [TBL] [Abstract][Full Text] [Related]
19. The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Seth CS; Kumar Chaturvedi P; Misra V Ecotoxicol Environ Saf; 2008 Sep; 71(1):76-85. PubMed ID: 18082263 [TBL] [Abstract][Full Text] [Related]
20. [Manganese uptake and transportation as well as antioxidant response to excess manganese in plants]. Yang ZB; You JF; Yang ZM Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2007 Dec; 33(6):480-8. PubMed ID: 18349501 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]