BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 19541417)

  • 1. Simulation of mercury capture by sorbent injection using a simplified model.
    Zhao B; Zhang Z; Jin J; Pan WP
    J Hazard Mater; 2009 Oct; 170(2-3):1179-85. PubMed ID: 19541417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-stage system to remove mercury and dioxins in flue gases.
    Hylander LD; Sollenberg H; Westas H
    Sci Total Environ; 2003 Mar; 304(1-3):137-44. PubMed ID: 12663178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mercury emissions from coal combustion: modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator.
    Scala F; Clack HL
    J Hazard Mater; 2008 Apr; 152(2):616-23. PubMed ID: 17703878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural effect of the in situ generated titania on its ability to oxidize and capture the gas-phase elemental mercury.
    Lee TG; Hyun JE
    Chemosphere; 2006 Jan; 62(1):26-33. PubMed ID: 15949836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of the flue gas cleaning system of an RDF incineration power plant.
    Jannelli E; Minutillo M
    Waste Manag; 2007; 27(5):684-90. PubMed ID: 16750619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Mercury Removal by Sorbent Injection.
    Meserole FB; Chang R; Carey TR; Machac J; Richardson CF
    J Air Waste Manag Assoc; 1999 Jun; 49(6):694-704. PubMed ID: 26355373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The simulation of condensation removal of a heavy metal from exhaust gases onto sorbent particles.
    Rodriguez A; Hall MJ
    Waste Manag; 2003; 23(6):493-502. PubMed ID: 12909090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorbents for capturing mercury in coal-fired boiler flue gas.
    Yang H; Xu Z; Fan M; Bland AE; Judkins RR
    J Hazard Mater; 2007 Jul; 146(1-2):1-11. PubMed ID: 17544578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling mercury speciation in combustion flue gases using support vector machine: prediction and evaluation.
    Zhao B; Zhang Z; Jin J; Pan WP
    J Hazard Mater; 2010 Feb; 174(1-3):244-50. PubMed ID: 19786321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of HCl on a sorption of mercury from flue gas evolved during incineration of hospital waste using entrained flow adsorbers.
    Szeliga Z; Honus S; Vavrova Z; Jirsa P; Vesely V; Carsky M; Vujanovic M; Regucki P; Krzyzynska R
    Waste Manag; 2022 Mar; 140():74-80. PubMed ID: 35066454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic studies of elemental mercury adsorption in activated carbon fixed bed reactor.
    Skodras G; Diamantopoulou I; Pantoleontos G; Sakellaropoulos GP
    J Hazard Mater; 2008 Oct; 158(1):1-13. PubMed ID: 18321645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The thief process for mercury removal from flue gas.
    Granite EJ; Freeman MC; Hargis RA; O'Dowd WJ; Pennline HW
    J Environ Manage; 2007 Sep; 84(4):628-34. PubMed ID: 16959396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 2. Fabric filter removal.
    Scala F
    Environ Sci Technol; 2001 Nov; 35(21):4373-8. PubMed ID: 11718360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 1. In-duct removal.
    Scala F
    Environ Sci Technol; 2001 Nov; 35(21):4367-72. PubMed ID: 11718359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capture of mercury ions by natural and industrial materials.
    Di Natale F; Lancia A; Molino A; Di Natale M; Karatza D; Musmarra D
    J Hazard Mater; 2006 May; 132(2-3):220-5. PubMed ID: 16271826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery.
    Xie J; Qu Z; Yan N; Yang S; Chen W; Hu L; Huang W; Liu P
    J Hazard Mater; 2013 Oct; 261():206-13. PubMed ID: 23933289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aluminum drinking water treatment residuals (Al-WTRs) as sorbent for mercury: Implications for soil remediation.
    Hovsepyan A; Bonzongo JC
    J Hazard Mater; 2009 May; 164(1):73-80. PubMed ID: 18814960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant.
    Liu Y; Kelly DJ; Yang H; Lin CC; Kuznicki SM; Xu Z
    Environ Sci Technol; 2008 Aug; 42(16):6205-10. PubMed ID: 18767688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of temperature and regeneration cycles on Hg capture and efficiency by structured Au/C regenerable sorbents.
    Ballestero D; Gómez-Giménez C; García-Díez E; Juan R; Rubio B; Izquierdo MT
    J Hazard Mater; 2013 Sep; 260():247-54. PubMed ID: 23774780
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/γ-Fe2O3 at lower temperatures.
    Yang S; Guo Y; Yan N; Qu Z; Xie J; Yang C; Jia J
    J Hazard Mater; 2011 Feb; 186(1):508-15. PubMed ID: 21130564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.