These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 19541616)

  • 1. Traceless protein splicing utilizing evolved split inteins.
    Lockless SW; Muir TW
    Proc Natl Acad Sci U S A; 2009 Jul; 106(27):10999-1004. PubMed ID: 19541616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic two-piece and three-piece split inteins for protein trans-splicing.
    Sun W; Yang J; Liu XQ
    J Biol Chem; 2004 Aug; 279(34):35281-6. PubMed ID: 15194682
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traceless splicing enabled by substrate-induced activation of the Nostoc punctiforme Npu DnaE intein after mutation of a catalytic cysteine to serine.
    Cheriyan M; Chan SH; Perler F
    J Mol Biol; 2014 Dec; 426(24):4018-4029. PubMed ID: 25451033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins.
    Aranko AS; Züger S; Buchinger E; Iwaï H
    PLoS One; 2009; 4(4):e5185. PubMed ID: 19365564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A promiscuous split intein with expanded protein engineering applications.
    Stevens AJ; Sekar G; Shah NH; Mostafavi AZ; Cowburn D; Muir TW
    Proc Natl Acad Sci U S A; 2017 Aug; 114(32):8538-8543. PubMed ID: 28739907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a tandem protein trans-splicing system based on native and engineered split inteins.
    Shi J; Muir TW
    J Am Chem Soc; 2005 May; 127(17):6198-206. PubMed ID: 15853324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conserved residues that modulate protein trans-splicing of Npu DnaE split intein.
    Wu Q; Gao Z; Wei Y; Ma G; Zheng Y; Dong Y; Liu Y
    Biochem J; 2014 Jul; 461(2):247-55. PubMed ID: 24758175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein trans-splicing on an M13 bacteriophage: towards directed evolution of a semisynthetic split intein by phage display.
    Garbe D; Thiel IV; Mootz HD
    J Pept Sci; 2010 Oct; 16(10):575-81. PubMed ID: 20862725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postsynthetic Domain Assembly with NpuDnaE and SspDnaB Split Inteins.
    Demonte D; Li N; Park S
    Appl Biochem Biotechnol; 2015 Nov; 177(5):1137-51. PubMed ID: 26288082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein trans-splicing of multiple atypical split inteins engineered from natural inteins.
    Lin Y; Li M; Song H; Xu L; Meng Q; Liu XQ
    PLoS One; 2013; 8(4):e59516. PubMed ID: 23593141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein trans-splicing of an atypical split intein showing structural flexibility and cross-reactivity.
    Song H; Meng Q; Liu XQ
    PLoS One; 2012; 7(9):e45355. PubMed ID: 23024818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-activity studies on the upstream splice junction of a semisynthetic intein.
    Wasmuth A; Ludwig C; Mootz HD
    Bioorg Med Chem; 2013 Jun; 21(12):3495-503. PubMed ID: 23618706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a screening system for inteins active in protein splicing based on intein insertion into the LacZα-peptide.
    Neugebauer M; Böcker JK; Matern JC; Pietrokovski S; Mootz HD
    Biol Chem; 2017 Jan; 398(1):57-67. PubMed ID: 27632429
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering artificially split inteins for applications in protein chemistry: biochemical characterization of the split Ssp DnaB intein and comparison to the split Sce VMA intein.
    Brenzel S; Kurpiers T; Mootz HD
    Biochemistry; 2006 Feb; 45(6):1571-8. PubMed ID: 16460004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution, mechanisms, and applications of intein-mediated protein splicing.
    Perler FB; Allewell NM
    J Biol Chem; 2014 May; 289(21):14488-9. PubMed ID: 24695739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure-based engineering and comparison of novel split inteins for protein ligation.
    Aranko AS; Oeemig JS; Zhou D; Kajander T; Wlodawer A; Iwaï H
    Mol Biosyst; 2014 May; 10(5):1023-34. PubMed ID: 24574026
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conditional Protein Splicing Switch in Hyperthermophiles through an Intein-Extein Partnership.
    Lennon CW; Stanger M; Banavali NK; Belfort M
    mBio; 2018 Jan; 9(1):. PubMed ID: 29382734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient and more general cis- and trans-splicing inteins through sequential directed evolution.
    Appleby-Tagoe JH; Thiel IV; Wang Y; Wang Y; Mootz HD; Liu XQ
    J Biol Chem; 2011 Sep; 286(39):34440-7. PubMed ID: 21832069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells.
    Peck SH; Chen I; Liu DR
    Chem Biol; 2011 May; 18(5):619-30. PubMed ID: 21609843
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural and dynamical features of inteins and implications on protein splicing.
    Eryilmaz E; Shah NH; Muir TW; Cowburn D
    J Biol Chem; 2014 May; 289(21):14506-11. PubMed ID: 24695731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.