BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 19541638)

  • 41. Nicotinic acid adenine dinucleotide phosphate: a new Ca2+ releasing agent in kidney.
    Cheng J; Yusufi ANK; Thompson MA; Chini EN; Grande JP
    J Am Soc Nephrol; 2001 Jan; 12(1):54-60. PubMed ID: 11134250
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Physiological roles of NAADP-mediated Ca2+ signaling.
    Galione A; Parrington J; Funnell T
    Sci China Life Sci; 2011 Aug; 54(8):725-32. PubMed ID: 21786195
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The NAADP receptor: new receptors or new regulation?
    Galione A; Petersen OH
    Mol Interv; 2005 Apr; 5(2):73-9. PubMed ID: 15821155
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Generation of cyclic ADP-ribose and nicotinic acid adenine dinucleotide phosphate by CD38 for Ca2+ signaling in interleukin-8-treated lymphokine-activated killer cells.
    Rah SY; Mushtaq M; Nam TS; Kim SH; Kim UH
    J Biol Chem; 2010 Jul; 285(28):21877-87. PubMed ID: 20442403
    [TBL] [Abstract][Full Text] [Related]  

  • 45. NAADP: an atypical Ca2+-release messenger?
    Genazzani AA; Billington RA
    Trends Pharmacol Sci; 2002 Apr; 23(4):165-7. PubMed ID: 11931990
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Production of NAADP and its role in Ca2+ mobilization associated with lysosomes in coronary arterial myocytes.
    Zhang F; Zhang G; Zhang AY; Koeberl MJ; Wallander E; Li PL
    Am J Physiol Heart Circ Physiol; 2006 Jul; 291(1):H274-82. PubMed ID: 16473958
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-Mediated Calcium Signaling Is Active in Memory CD4
    Chakraborty A; Dissanayake R; Wall KA
    Molecules; 2024 Feb; 29(4):. PubMed ID: 38398657
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Metabolism of the novel Ca2+-mobilizing messenger nicotinic acid-adenine dinucleotide phosphate via a 2'-specific Ca2+-dependent phosphatase.
    Berridge G; Cramer R; Galione A; Patel S
    Biochem J; 2002 Jul; 365(Pt 1):295-301. PubMed ID: 11936953
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pharmacological properties of the Ca2+-release mechanism sensitive to NAADP in the sea urchin egg.
    Genazzani AA; Mezna M; Dickey DM; Michelangeli F; Walseth TF; Galione A
    Br J Pharmacol; 1997 Aug; 121(7):1489-95. PubMed ID: 9257932
    [TBL] [Abstract][Full Text] [Related]  

  • 50. NAADP/SERCA3-Dependent Ca
    Feng M; Elaïb Z; Borgel D; Denis CV; Adam F; Bryckaert M; Rosa JP; Bobe R
    Circ Res; 2020 Sep; 127(7):e166-e183. PubMed ID: 32588751
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NFAT activation by membrane potential follows a calcium pathway distinct from other activity-related transcription factors in skeletal muscle cells.
    Valdés JA; Gaggero E; Hidalgo J; Leal N; Jaimovich E; Carrasco MA
    Am J Physiol Cell Physiol; 2008 Mar; 294(3):C715-25. PubMed ID: 18184878
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nicotinic acid adenine dinucleotide phosphate (NAADP) and Ca2+ mobilization.
    Mándi M; Bak J
    J Recept Signal Transduct Res; 2008; 28(3):163-84. PubMed ID: 18569524
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Insulin receptor signaling for the proliferation of pancreatic β-cells: involvement of Ca2+ second messengers, IP3, NAADP and cADPR.
    Shawl AI; Park KH; Kim UH
    Islets; 2009; 1(3):216-23. PubMed ID: 21099275
    [TBL] [Abstract][Full Text] [Related]  

  • 54. NAADP receptors mediate calcium signaling stimulated by endothelin-1 and norepinephrine in renal afferent arterioles.
    Thai TL; Churchill GC; Arendshorst WJ
    Am J Physiol Renal Physiol; 2009 Aug; 297(2):F510-6. PubMed ID: 19439521
    [TBL] [Abstract][Full Text] [Related]  

  • 55. NAADP mediates ATP-induced Ca2+ signals in astrocytes.
    Barceló-Torns M; Lewis AM; Gubern A; Barneda D; Bloor-Young D; Picatoste F; Churchill GC; Claro E; Masgrau R
    FEBS Lett; 2011 Jul; 585(14):2300-6. PubMed ID: 21664355
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Differential mechanisms of Ca(2+) release from vascular smooth muscle cell microsomes.
    Yusufi AN; Cheng J; Thompson MA; Burnett JC; Grande JP
    Exp Biol Med (Maywood); 2002 Jan; 227(1):36-44. PubMed ID: 11788782
    [TBL] [Abstract][Full Text] [Related]  

  • 57. New aspects of nuclear calcium signalling.
    Gerasimenko O; Gerasimenko J
    J Cell Sci; 2004 Jul; 117(Pt 15):3087-94. PubMed ID: 15226390
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A novel signaling pathway of ADP-ribosyl cyclase activation by angiotensin II in adult rat cardiomyocytes.
    Gul R; Kim SY; Park KH; Kim BJ; Kim SJ; Im MJ; Kim UH
    Am J Physiol Heart Circ Physiol; 2008 Jul; 295(1):H77-88. PubMed ID: 18456728
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antisense-mediated loss of calcium homoeostasis endoplasmic reticulum protein (CHERP; ERPROT213-21) impairs Ca2+ mobilization, nuclear factor of activated T-cells (NFAT) activation and cell proliferation in Jurkat T-lymphocytes.
    O'Rourke FA; LaPlante JM; Feinstein MB
    Biochem J; 2003 Jul; 373(Pt 1):133-43. PubMed ID: 12656674
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Pharmacological activation of the ryanodine receptor in Jurkat T-lymphocytes.
    Hohenegger M; Berg I; Weigl L; Mayr GW; Potter BV; Guse AH
    Br J Pharmacol; 1999 Nov; 128(6):1235-40. PubMed ID: 10578137
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.