BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 19541646)

  • 1. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit.
    Appel J; Windpassinger PJ; Oblak D; Hoff UB; Kjaergaard N; Polzik ES
    Proc Natl Acad Sci U S A; 2009 Jul; 106(27):10960-5. PubMed ID: 19541646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin squeezing of 10
    Bao H; Duan J; Jin S; Lu X; Li P; Qu W; Wang M; Novikova I; Mikhailov EE; Zhao KF; Mølmer K; Shen H; Xiao Y
    Nature; 2020 May; 581(7807):159-163. PubMed ID: 32405021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Squeezing and entanglement in a Bose-Einstein condensate.
    Estève J; Gross C; Weller A; Giovanazzi S; Oberthaler MK
    Nature; 2008 Oct; 455(7217):1216-9. PubMed ID: 18830245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Entanglement-Enhanced Phase Estimation without Prior Phase Information.
    Colangelo G; Martin Ciurana F; Puentes G; Mitchell MW; Sewell RJ
    Phys Rev Lett; 2017 Jun; 118(23):233603. PubMed ID: 28644656
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Realizing spin squeezing with Rydberg interactions in an optical clock.
    Eckner WJ; Darkwah Oppong N; Cao A; Young AW; Milner WR; Robinson JM; Ye J; Kaufman AM
    Nature; 2023 Sep; 621(7980):734-739. PubMed ID: 37648865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noisy Quantum Metrology Enhanced by Continuous Nondemolition Measurement.
    Rossi MAC; Albarelli F; Tamascelli D; Genoni MG
    Phys Rev Lett; 2020 Nov; 125(20):200505. PubMed ID: 33258625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum nondemolition measurement of large-spin ensembles by dynamical decoupling.
    Koschorreck M; Napolitano M; Dubost B; Mitchell MW
    Phys Rev Lett; 2010 Aug; 105(9):093602. PubMed ID: 20868158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin squeezing of atomic ensembles via nuclear-electronic spin entanglement.
    Fernholz T; Krauter H; Jensen K; Sherson JF; Sørensen AS; Polzik ES
    Phys Rev Lett; 2008 Aug; 101(7):073601. PubMed ID: 18764532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scalable spin squeezing in a dipolar Rydberg atom array.
    Bornet G; Emperauger G; Chen C; Ye B; Block M; Bintz M; Boyd JA; Barredo D; Comparin T; Mezzacapo F; Roscilde T; Lahaye T; Yao NY; Browaeys A
    Nature; 2023 Sep; 621(7980):728-733. PubMed ID: 37648859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced squeezing of a collective spin via control of its qudit subsystems.
    Norris LM; Trail CM; Jessen PS; Deutsch IH
    Phys Rev Lett; 2012 Oct; 109(17):173603. PubMed ID: 23215187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear atom interferometer surpasses classical precision limit.
    Gross C; Zibold T; Nicklas E; Estève J; Oberthaler MK
    Nature; 2010 Apr; 464(7292):1165-9. PubMed ID: 20357767
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atom-chip-based generation of entanglement for quantum metrology.
    Riedel MF; Böhi P; Li Y; Hänsch TW; Sinatra A; Treutlein P
    Nature; 2010 Apr; 464(7292):1170-3. PubMed ID: 20357765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic sensitivity beyond the projection noise limit by spin squeezing.
    Sewell RJ; Koschorreck M; Napolitano M; Dubost B; Behbood N; Mitchell MW
    Phys Rev Lett; 2012 Dec; 109(25):253605. PubMed ID: 23368463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of macroscopic singlet states in a cold atomic ensemble.
    Behbood N; Martin Ciurana F; Colangelo G; Napolitano M; Tóth G; Sewell RJ; Mitchell MW
    Phys Rev Lett; 2014 Aug; 113(9):093601. PubMed ID: 25215981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Entanglement-Enhanced Radio-Frequency Field Detection and Waveform Sensing.
    Martin Ciurana F; Colangelo G; Slodička L; Sewell RJ; Mitchell MW
    Phys Rev Lett; 2017 Jul; 119(4):043603. PubMed ID: 29341778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entanglement on an optical atomic-clock transition.
    Pedrozo-Peñafiel E; Colombo S; Shu C; Adiyatullin AF; Li Z; Mendez E; Braverman B; Kawasaki A; Akamatsu D; Xiao Y; Vuletić V
    Nature; 2020 Dec; 588(7838):414-418. PubMed ID: 33328668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An optical lattice clock with accuracy and stability at the 10(-18) level.
    Bloom BJ; Nicholson TL; Williams JR; Campbell SL; Bishof M; Zhang X; Zhang W; Bromley SL; Ye J
    Nature; 2014 Feb; 506(7486):71-5. PubMed ID: 24463513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms.
    Hosten O; Engelsen NJ; Krishnakumar R; Kasevich MA
    Nature; 2016 Jan; 529(7587):505-8. PubMed ID: 26751056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving Short-Term Stability in Optical Lattice Clocks by Quantum Nondemolition Measurement.
    Orenes DB; Sewell RJ; Lodewyck J; Mitchell MW
    Phys Rev Lett; 2022 Apr; 128(15):153201. PubMed ID: 35499904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal bright multimode quantum squeezing via multi-seeding energy-level cascaded four-wave mixing.
    Li J; Zeng J; Li F; Zhang Y; Cai Y
    Opt Express; 2022 Oct; 30(22):39762-39774. PubMed ID: 36298921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.