BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19542010)

  • 21. Capsule expression in Streptococcus mitis modulates interaction with oral keratinocytes and alters susceptibility to human antimicrobial peptides.
    Rukke HV; Engen SA; Schenck K; Petersen FC
    Mol Oral Microbiol; 2016 Aug; 31(4):302-13. PubMed ID: 26255868
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biology and clinical relevance of naturally occurring antimicrobial peptides.
    Gallo RL; Murakami M; Ohtake T; Zaiou M
    J Allergy Clin Immunol; 2002 Dec; 110(6):823-31. PubMed ID: 12464945
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deletion of mtrC in Haemophilus ducreyi increases sensitivity to human antimicrobial peptides and activates the CpxRA regulon.
    Rinker SD; Trombley MP; Gu X; Fortney KR; Bauer ME
    Infect Immun; 2011 Jun; 79(6):2324-34. PubMed ID: 21444663
    [TBL] [Abstract][Full Text] [Related]  

  • 24. pH modulates the activity and synergism of the airway surface liquid antimicrobials β-defensin-3 and LL-37.
    Abou Alaiwa MH; Reznikov LR; Gansemer ND; Sheets KA; Horswill AR; Stoltz DA; Zabner J; Welsh MJ
    Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18703-8. PubMed ID: 25512526
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Human antimicrobial peptides: defensins, cathelicidins and histatins.
    De Smet K; Contreras R
    Biotechnol Lett; 2005 Sep; 27(18):1337-47. PubMed ID: 16215847
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Host defense effector molecules in mucosal secretions.
    Tjabringa GS; Vos JB; Olthuis D; Ninaber DK; Rabe KF; Schalkwijk J; Hiemstra PS; Zeeuwen PL
    FEMS Immunol Med Microbiol; 2005 Aug; 45(2):151-8. PubMed ID: 16051067
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergistic anti-inflammatory activity of the antimicrobial peptides human beta-defensin-3 (hBD-3) and cathelicidin (LL-37) in a three-dimensional co-culture model of gingival epithelial cells and fibroblasts.
    Bedran TB; Mayer MP; Spolidorio DP; Grenier D
    PLoS One; 2014; 9(9):e106766. PubMed ID: 25187958
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms of cell death induced by the neutrophil antimicrobial peptides alpha-defensins and LL-37.
    Aarbiou J; Tjabringa GS; Verhoosel RM; Ninaber DK; White SR; Peltenburg LT; Rabe KF; Hiemstra PS
    Inflamm Res; 2006 Mar; 55(3):119-27. PubMed ID: 16673155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of preservative-free artificial tears on the antimicrobial activity of human beta-defensin-2 and cathelicidin LL-37 in vitro.
    Huang LC; Jean D; McDermott AM
    Eye Contact Lens; 2005 Jan; 31(1):34-8. PubMed ID: 15665670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human antimicrobial peptides: analysis and application.
    Cole AM; Ganz T
    Biotechniques; 2000 Oct; 29(4):822-6, 828, 830-1. PubMed ID: 11056814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Capsular antigen fraction 1 and Pla modulate the susceptibility of Yersinia pestis to pulmonary antimicrobial peptides such as cathelicidin.
    Galván EM; Lasaro MA; Schifferli DM
    Infect Immun; 2008 Apr; 76(4):1456-64. PubMed ID: 18227173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Susceptibility of various oral bacteria to antimicrobial peptides and to phagocytosis by neutrophils.
    Ji S; Hyun J; Park E; Lee BL; Kim KK; Choi Y
    J Periodontal Res; 2007 Oct; 42(5):410-9. PubMed ID: 17760818
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antimicrobial peptides: the ancient arm of the human immune system.
    Wiesner J; Vilcinskas A
    Virulence; 2010; 1(5):440-64. PubMed ID: 21178486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antimicrobial peptides initiate IL-1 beta posttranslational processing: a novel role beyond innate immunity.
    Perregaux DG; Bhavsar K; Contillo L; Shi J; Gabel CA
    J Immunol; 2002 Mar; 168(6):3024-32. PubMed ID: 11884475
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thymic stromal lymphopoietin exerts antimicrobial activities.
    Sonesson A; Kasetty G; Olin AI; Malmsten M; Mörgelin M; Sørensen OE; Schmidtchen A
    Exp Dermatol; 2011 Dec; 20(12):1004-10. PubMed ID: 22092577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antimicrobial host defense in the upper gastrointestinal tract.
    Hosaka Y; Koslowski M; Nuding S; Wang G; Schlee M; Schäfer C; Saigenji K; Stange EF; Wehkamp J
    Eur J Gastroenterol Hepatol; 2008 Dec; 20(12):1151-8. PubMed ID: 18989140
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional study of elafin cleaved by Pseudomonas aeruginosa metalloproteinases.
    Guyot N; Bergsson G; Butler MW; Greene CM; Weldon S; Kessler E; Levine RL; O'Neill SJ; Taggart CC; McElvaney NG
    Biol Chem; 2010 Jun; 391(6):705-16. PubMed ID: 20370321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antimicrobial peptides in animals and their role in host defences.
    Brogden KA; Ackermann M; McCray PB; Tack BF
    Int J Antimicrob Agents; 2003 Nov; 22(5):465-78. PubMed ID: 14602364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antimicrobial peptides in lung transplant recipients with bronchiolitis obliterans syndrome.
    Anderson RL; Hiemstra PS; Ward C; Forrest IA; Murphy D; Proud D; Lordan J; Corris PA; Fisher AJ
    Eur Respir J; 2008 Sep; 32(3):670-7. PubMed ID: 18508823
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antimicrobial Peptide LL-37 Is Both a Substrate of Cathepsins S and K and a Selective Inhibitor of Cathepsin L.
    Andrault PM; Samsonov SA; Weber G; Coquet L; Nazmi K; Bolscher JG; Lalmanach AC; Jouenne T; Brömme D; Pisabarro MT; Lalmanach G; Lecaille F
    Biochemistry; 2015 May; 54(17):2785-98. PubMed ID: 25884905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.