BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19542019)

  • 61. Proteomic and functional analysis of NCS-1 binding proteins reveals novel signaling pathways required for inner ear development in zebrafish.
    Petko JA; Kabbani N; Frey C; Woll M; Hickey K; Craig M; Canfield VA; Levenson R
    BMC Neurosci; 2009 Mar; 10():27. PubMed ID: 19320994
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The Rac1 regulator ELMO1 controls vascular morphogenesis in zebrafish.
    Epting D; Wendik B; Bennewitz K; Dietz CT; Driever W; Kroll J
    Circ Res; 2010 Jul; 107(1):45-55. PubMed ID: 20466982
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Global analysis of the haematopoietic and endothelial transcriptome during zebrafish development.
    Cannon JE; Place ES; Eve AM; Bradshaw CR; Sesay A; Morrell NW; Smith JC
    Mech Dev; 2013 Feb; 130(2-3):122-31. PubMed ID: 23072875
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Identification of vascular and hematopoietic genes downstream of etsrp by deep sequencing in zebrafish.
    Gomez G; Lee JH; Veldman MB; Lu J; Xiao X; Lin S
    PLoS One; 2012; 7(3):e31658. PubMed ID: 22438865
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Global analysis of hematopoietic and vascular endothelial gene expression by tissue specific microarray profiling in zebrafish.
    Covassin L; Amigo JD; Suzuki K; Teplyuk V; Straubhaar J; Lawson ND
    Dev Biol; 2006 Nov; 299(2):551-62. PubMed ID: 16999953
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium.
    Uyttendaele H; Ho J; Rossant J; Kitajewski J
    Proc Natl Acad Sci U S A; 2001 May; 98(10):5643-8. PubMed ID: 11344305
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Noncanonical activity of seryl-transfer RNA synthetase and vascular development.
    Kawahara A; Stainier DY
    Trends Cardiovasc Med; 2009 Aug; 19(6):179-82. PubMed ID: 20211432
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Identification of vasculature-specific genes by microarray analysis of Etsrp/Etv2 overexpressing zebrafish embryos.
    Wong KS; Proulx K; Rost MS; Sumanas S
    Dev Dyn; 2009 Jul; 238(7):1836-50. PubMed ID: 19504456
    [TBL] [Abstract][Full Text] [Related]  

  • 69. PRSS23 is essential for the Snail-dependent endothelial-to-mesenchymal transition during valvulogenesis in zebrafish.
    Chen IH; Wang HH; Hsieh YS; Huang WC; Yeh HI; Chuang YJ
    Cardiovasc Res; 2013 Mar; 97(3):443-53. PubMed ID: 23213106
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Organogenesis--heart and blood formation from the zebrafish point of view.
    Thisse C; Zon LI
    Science; 2002 Jan; 295(5554):457-62. PubMed ID: 11799232
    [TBL] [Abstract][Full Text] [Related]  

  • 71. KCTD10 is critical for heart and blood vessel development of zebrafish.
    Hu X; Gan S; Xie G; Li L; Chen C; Ding X; Han M; Xiang S; Zhang J
    Acta Biochim Biophys Sin (Shanghai); 2014 May; 46(5):377-86. PubMed ID: 24705121
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Regulation of a vascular plexus by gata4 is mediated in zebrafish through the chemokine sdf1a.
    Torregroza I; Holtzinger A; Mendelson K; Liu TC; Hla T; Evans T
    PLoS One; 2012; 7(10):e46844. PubMed ID: 23056483
    [TBL] [Abstract][Full Text] [Related]  

  • 73. [Mechanotransduction of hemodynamic forces regulates organogenesis].
    Sidi S; Rosa FM
    Med Sci (Paris); 2004 May; 20(5):557-61. PubMed ID: 15190475
    [TBL] [Abstract][Full Text] [Related]  

  • 74. phlda3 overexpression impairs specification of hemangioblasts and vascular development.
    Wang X; Li J; Yang Z; Wang L; Li L; Deng W; Zhou J; Wang L; Xu C; Chen Q; Wang QK
    FEBS J; 2018 Nov; 285(21):4071-4081. PubMed ID: 30188605
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Pancreas development in zebrafish.
    Gnügge L; Meyer D; Driever W
    Methods Cell Biol; 2004; 76():531-51. PubMed ID: 15602891
    [No Abstract]   [Full Text] [Related]  

  • 76. Single-cell chromatin accessibility maps reveal regulatory programs driving early mouse organogenesis.
    Pijuan-Sala B; Wilson NK; Xia J; Hou X; Hannah RL; Kinston S; Calero-Nieto FJ; Poirion O; Preissl S; Liu F; Göttgens B
    Nat Cell Biol; 2020 Apr; 22(4):487-497. PubMed ID: 32231307
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Identification of distinct vascular mural cell populations during zebrafish embryonic development.
    Colijn S; Nambara M; Malin G; Sacchetti EA; Stratman AN
    Dev Dyn; 2024 May; 253(5):519-541. PubMed ID: 38112237
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Heart field origin of great vessel precursors relies on nkx2.5-mediated vasculogenesis.
    Paffett-Lugassy N; Singh R; Nevis KR; Guner-Ataman B; O'Loughlin E; Jahangiri L; Harvey RP; Burns CG; Burns CE
    Nat Cell Biol; 2013 Nov; 15(11):1362-9. PubMed ID: 24161929
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Radial glia regulate vascular patterning around the developing spinal cord.
    Matsuoka RL; Marass M; Avdesh A; Helker CS; Maischein HM; Grosse AS; Kaur H; Lawson ND; Herzog W; Stainier DY
    Elife; 2016 Nov; 5():. PubMed ID: 27852438
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Fine-tune regulation of carboxypeptidase N1 controls vascular patterning during zebrafish development.
    Wu TY; Wang YS; Song YC; Chen ZY; Chen YT; Chiu CC; Wu CY
    Sci Rep; 2017 May; 7(1):1852. PubMed ID: 28500283
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.