BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 19542228)

  • 1. Structural and functional elucidation of the mechanism promoting error-prone synthesis by human DNA polymerase kappa opposite the 7,8-dihydro-8-oxo-2'-deoxyguanosine adduct.
    Irimia A; Eoff RL; Guengerich FP; Egli M
    J Biol Chem; 2009 Aug; 284(33):22467-22480. PubMed ID: 19542228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics, structure, and mechanism of 8-Oxo-7,8-dihydro-2'-deoxyguanosine bypass by human DNA polymerase η.
    Patra A; Nagy LD; Zhang Q; Su Y; Müller L; Guengerich FP; Egli M
    J Biol Chem; 2014 Jun; 289(24):16867-82. PubMed ID: 24759104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N-clasp of human DNA polymerase kappa promotes blockage or error-free bypass of adenine- or guanine-benzo[a]pyrenyl lesions.
    Jia L; Geacintov NE; Broyde S
    Nucleic Acids Res; 2008 Nov; 36(20):6571-84. PubMed ID: 18931375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication Bypass of the
    Tomar R; Li S; Egli M; Stone MP
    Biochemistry; 2024 Mar; 63(6):754-766. PubMed ID: 38413007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and Kinetic Analysis of Miscoding Opposite the DNA Adduct 1,N6-Ethenodeoxyadenosine by Human Translesion DNA Polymerase η.
    Patra A; Su Y; Zhang Q; Johnson KM; Guengerich FP; Egli M
    J Biol Chem; 2016 Jul; 291(27):14134-14145. PubMed ID: 27226627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic Basis for the Bypass of a Bulky DNA Adduct Catalyzed by a Y-Family DNA Polymerase.
    Vyas R; Efthimiopoulos G; Tokarsky EJ; Malik CK; Basu AK; Suo Z
    J Am Chem Soc; 2015 Sep; 137(37):12131-42. PubMed ID: 26327169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preferred WMSA catalytic mechanism of the nucleotidyl transfer reaction in human DNA polymerase κ elucidates error-free bypass of a bulky DNA lesion.
    Lior-Hoffmann L; Wang L; Wang S; Geacintov NE; Broyde S; Zhang Y
    Nucleic Acids Res; 2012 Oct; 40(18):9193-205. PubMed ID: 22772988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic analysis of human PrimPol DNA polymerase activity reveals a generally error-prone enzyme capable of accurately bypassing 7,8-dihydro-8-oxo-2'-deoxyguanosine.
    Zafar MK; Ketkar A; Lodeiro MF; Cameron CE; Eoff RL
    Biochemistry; 2014 Oct; 53(41):6584-94. PubMed ID: 25255211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanistic studies of the bypass of a bulky single-base lesion catalyzed by a Y-family DNA polymerase.
    Sherrer SM; Brown JA; Pack LR; Jasti VP; Fowler JD; Basu AK; Suo Z
    J Biol Chem; 2009 Mar; 284(10):6379-88. PubMed ID: 19124465
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Mechanism of RNA Polymerase II Transcriptional Mutagenesis by the Epimerizable DNA Lesion, Fapy·dG.
    Gao S; Hou P; Oh J; Wang D; Greenberg MM
    J Am Chem Soc; 2024 Mar; 146(9):6274-6282. PubMed ID: 38393762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of oxidatively damaged DNA on the active site preorganization during nucleotide incorporation in a high fidelity polymerase from Bacillus stearothermophilus.
    Venkatramani R; Radhakrishnan R
    Proteins; 2008 May; 71(3):1360-72. PubMed ID: 18058909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations in human DNA polymerase eta motif II alter bypass of DNA lesions.
    Glick E; Vigna KL; Loeb LA
    EMBO J; 2001 Dec; 20(24):7303-12. PubMed ID: 11743006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elongation and Ligation-Mediated Differential Coding for Label-Free and Locus-Specific Analysis of 8-Oxo-7,8-dihydroguanine in DNA.
    Zhao NN; Wang Q; Yang DM; Li DL; Han Y; Zhao S; Zou X; Zhang CY
    Anal Chem; 2024 Apr; 96(13):5323-5330. PubMed ID: 38501982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of the Y432S Cancer-Associated Variant on the Reaction Mechanism of Human DNA Polymerase κ.
    Maghsoud Y; Roy A; Leddin EM; Cisneros GA
    J Chem Inf Model; 2024 May; 64(10):4231-4249. PubMed ID: 38717969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and kinetic analysis of nucleoside triphosphate incorporation opposite an abasic site by human translesion DNA polymerase η.
    Patra A; Zhang Q; Lei L; Su Y; Egli M; Guengerich FP
    J Biol Chem; 2015 Mar; 290(13):8028-38. PubMed ID: 25666608
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of Ribonucleotide Backbone on Translesion Synthesis and Repair of 7,8-Dihydro-8-oxoguanine.
    Sassa A; Çağlayan M; Rodriguez Y; Beard WA; Wilson SH; Nohmi T; Honma M; Yasui M
    J Biol Chem; 2016 Nov; 291(46):24314-24323. PubMed ID: 27660390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biochemical Activity of 17 Cancer-Associated Variants of DNA Polymerase Kappa Predicted by Electrostatic Properties.
    Pathira Kankanamge LS; Mora A; Ondrechen MJ; Beuning PJ
    Chem Res Toxicol; 2023 Nov; 36(11):1789-1803. PubMed ID: 37883788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 8-Oxo-2'-deoxyguanosine Replication in Mutational Hot Spot Sequences of the
    Stanio S; Bacurio JHT; Yang H; Greenberg MM; Basu AK
    Chem Res Toxicol; 2023 May; 36(5):782-789. PubMed ID: 37093780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent Advances in Understanding the Structures of Translesion Synthesis DNA Polymerases.
    Ling JA; Frevert Z; Washington MT
    Genes (Basel); 2022 May; 13(5):. PubMed ID: 35627300
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.