These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
508 related articles for article (PubMed ID: 1954227)
21. Similarity between pyridoxal/pyridoxamine phosphate-dependent enzymes involved in dideoxy and deoxyaminosugar biosynthesis and other pyridoxal phosphate enzymes. Pascarella S; Bossa F Protein Sci; 1994 Apr; 3(4):701-5. PubMed ID: 8003988 [TBL] [Abstract][Full Text] [Related]
22. Comparative studies on thermophilicity and thermostability of aspartate aminotransferases. Cubellis MV; Arnone MI; Birolo L; Sannia G; Marino G Biotechnol Appl Biochem; 1993 Dec; 18(3):417-25. PubMed ID: 8297515 [TBL] [Abstract][Full Text] [Related]
23. Post-translational modifications in aspartate aminotransferase from Sulfolobus solfataricus. Detection of N-epsilon-methyllysines by mass spectrometry. Zappacosta F; Sannia G; Savoy LA; Marino G; Pucci P Eur J Biochem; 1994 Jun; 222(3):761-7. PubMed ID: 8026489 [TBL] [Abstract][Full Text] [Related]
24. Mutant aspartate aminotransferase (K258H) without pyridoxal-5'-phosphate-binding lysine residue. Structural and catalytic properties. Ziak M; Jäger J; Malashkevich VN; Gehring H; Jaussi R; Jansonius JN; Christen P Eur J Biochem; 1993 Feb; 211(3):475-84. PubMed ID: 8436109 [TBL] [Abstract][Full Text] [Related]
25. Structure and mechanism of a cysteine sulfinate desulfinase engineered on the aspartate aminotransferase scaffold. Fernandez FJ; de Vries D; Peña-Soler E; Coll M; Christen P; Gehring H; Vega MC Biochim Biophys Acta; 2012 Feb; 1824(2):339-49. PubMed ID: 22138634 [TBL] [Abstract][Full Text] [Related]
26. The complete amino acid sequence of aspartate aminotransferase from Escherichia coli: sequence comparison with pig isoenzymes. Kondo K; Wakabayashi S; Yagi T; Kagamiyama H Biochem Biophys Res Commun; 1984 Jul; 122(1):62-7. PubMed ID: 6378205 [TBL] [Abstract][Full Text] [Related]
27. Active-site Arg --> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase. Vacca RA; Giannattasio S; Graber R; Sandmeier E; Marra E; Christen P J Biol Chem; 1997 Aug; 272(35):21932-7. PubMed ID: 9268327 [TBL] [Abstract][Full Text] [Related]
28. Reorientations of coenzyme in the active site of chicken cytosolic aspartate aminotransferase. Makarov VL; Kochkina VM; Rosenberg MV; Torchinsky YuM Prog Clin Biol Res; 1984; 144B():213-21. PubMed ID: 6718403 [No Abstract] [Full Text] [Related]
29. Specific labeling of cytosolic and mitochondrial aspartate aminotransferases. Carotti D; Andria F; Giartosio A; Turano C; Riva F Eur J Biochem; 1985 Feb; 146(3):619-23. PubMed ID: 3971967 [TBL] [Abstract][Full Text] [Related]
30. Aspartate aminotransferase from a thermophilic formate-utilizing methanogen, Methanobacterium thermoformicicum strain SF-4: relation to serine and phosphoserine aminotransferases, but not to the aspartate aminotransferase family. Tanaka T; Yamamoto S; Moriya T; Taniguchi M; Hayashi H; Kagamiyama H; Oi S J Biochem; 1994 Feb; 115(2):309-17. PubMed ID: 8206881 [TBL] [Abstract][Full Text] [Related]
31. Stereospecificity of sodium borohydride reduction of Schiff bases at the active site of aspartate aminotransferase. Zito SW; Martinez-Carrion M J Biol Chem; 1980 Sep; 255(18):8645-9. PubMed ID: 7410385 [TBL] [Abstract][Full Text] [Related]
32. Structure of Thermus thermophilus HB8 aspartate aminotransferase and its complex with maleate. Nakai T; Okada K; Akutsu S; Miyahara I; Kawaguchi S; Kato R; Kuramitsu S; Hirotsu K Biochemistry; 1999 Feb; 38(8):2413-24. PubMed ID: 10029535 [TBL] [Abstract][Full Text] [Related]
33. Different reactivity of mitochondrial and cytoplasmic aspartate aminotransferases toward an affinity labeling reagent analog of the coenzyme. Riva F; Carotti D; Barra D; Giartosio A; Turano C J Biol Chem; 1980 Oct; 255(19):9230-5. PubMed ID: 7410421 [TBL] [Abstract][Full Text] [Related]
34. Porcine cytosolic aspartate aminotransferase reconstituted with [4'-13C]pyridoxal phosphate. pH- and ligand-induced changes of the coenzyme observed by 13C NMR spectroscopy. Higaki T; Tanase S; Nagashima F; Morino Y; Scott AI; Williams HJ; Stolowich NJ Biochemistry; 1991 Mar; 30(9):2519-26. PubMed ID: 2001379 [TBL] [Abstract][Full Text] [Related]
35. Inorganic phosphate binding and electrostatic effects in the active center of aspartate aminotransferase apoenzyme. Martinez-Liarte JH; Iriarte A; Martinez-Carrion M Biochemistry; 1992 Mar; 31(10):2712-9. PubMed ID: 1547211 [TBL] [Abstract][Full Text] [Related]
36. The separate effects of coenzyme components may not be additive. Roles of pyridoxal and inorganic phosphate in aspartate aminotransferase apoenzymes. Iriarte A; Kraft K; Martinez-Carrion M J Biol Chem; 1985 Jun; 260(12):7457-63. PubMed ID: 3997881 [TBL] [Abstract][Full Text] [Related]
37. Binding of C5-dicarboxylic substrate to aspartate aminotransferase: implications for the conformational change at the transaldimination step. Islam MM; Goto M; Miyahara I; Ikushiro H; Hirotsu K; Hayashi H Biochemistry; 2005 Jun; 44(23):8218-29. PubMed ID: 15938611 [TBL] [Abstract][Full Text] [Related]
38. Active site model for gamma-aminobutyrate aminotransferase explains substrate specificity and inhibitor reactivities. Toney MD; Pascarella S; De Biase D Protein Sci; 1995 Nov; 4(11):2366-74. PubMed ID: 8563634 [TBL] [Abstract][Full Text] [Related]
39. Substitution of an arginyl residue for the active site lysyl residue (Lys258) of aspartate aminotransferase. Kuramitsu S; Inoue Y; Tanase S; Morino Y; Kagamiyama H Biochem Biophys Res Commun; 1987 Jul; 146(2):416-21. PubMed ID: 3113421 [TBL] [Abstract][Full Text] [Related]
40. The ionization states of the 5'-phosphate group in the various coenzyme forms bound to mitochondrial aspartate aminotransferase. Sanchez-Ruiz JM; Iriarte A; Martinez-Carrion M Arch Biochem Biophys; 1991 Apr; 286(1):38-45. PubMed ID: 1897957 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]