BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19542331)

  • 21. Biochemical Characterization of CYP505D6, a Self-Sufficient Cytochrome P450 from the White-Rot Fungus Phanerochaete chrysosporium.
    Sakai K; Matsuzaki F; Wise L; Sakai Y; Jindou S; Ichinose H; Takaya N; Kato M; Wariishi H; Shimizu M
    Appl Environ Microbiol; 2018 Nov; 84(22):. PubMed ID: 30171007
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biotransformation of bisphenol F by white-rot fungus Phanerochaete sordida YK-624 under non-ligninolytic condition.
    Yin R; Zhang X; Wang B; Jia J; Wang N; Xie C; Su P; Xiao P; Wang J; Xiao T; Yan B; Hirai H
    Appl Microbiol Biotechnol; 2022 Sep; 106(18):6277-6287. PubMed ID: 35986779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium.
    Teramoto H; Tanaka H; Wariishi H
    Appl Microbiol Biotechnol; 2004 Dec; 66(3):312-7. PubMed ID: 15448939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Piperonyl butoxide induces the expression of cytochrome P450 and glutathione S-transferase genes in Drosophila melanogaster.
    Willoughby L; Batterham P; Daborn PJ
    Pest Manag Sci; 2007 Aug; 63(8):803-8. PubMed ID: 17514638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. White-rot fungus Phanerochaete chrysosporium metabolizes chloropyridinyl-type neonicotinoid insecticides by an N-dealkylation reaction catalyzed by two cytochrome P450s.
    Mori T; Ohno H; Ichinose H; Kawagishi H; Hirai H
    J Hazard Mater; 2021 Jan; 402():123831. PubMed ID: 33254812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hydroxylation of bisphenol A by hyper lignin-degrading fungus Phanerochaete sordida YK-624 under non-ligninolytic condition.
    Wang J; Yamamoto R; Yamamoto Y; Tokumoto T; Dong J; Thomas P; Hirai H; Kawagishi H
    Chemosphere; 2013 Oct; 93(7):1419-23. PubMed ID: 23942019
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Degradation of diuron by Phanerochaete chrysosporium: role of ligninolytic enzymes and cytochrome P450.
    Coelho-Moreira Jda S; Bracht A; de Souza AC; Oliveira RF; de Sá-Nakanishi AB; de Souza CG; Peralta RM
    Biomed Res Int; 2013; 2013():251354. PubMed ID: 24490150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Metabolism of 4,4'-dichlorobiphenyl by white-rot fungi Phanerochaete chrysosporium and Phanerochaete sp. MZ142.
    Kamei I; Kogura R; Kondo R
    Appl Microbiol Biotechnol; 2006 Sep; 72(3):566-75. PubMed ID: 16528513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flavin-containing monooxygenases from Phanerochaete chrysosporium responsible for fungal metabolism of phenolic compounds.
    Nakamura T; Ichinose H; Wariishi H
    Biodegradation; 2012 Jun; 23(3):343-50. PubMed ID: 22102096
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cytochrome P450 oxidoreductase gene and its differentially terminated cDNAs from the white rot fungus Phanerochaete chrysosporium.
    Yadav JS; Loper JC
    Curr Genet; 2000 Jan; 37(1):65-73. PubMed ID: 10672447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic pathways utilized by Phanerochaete chrysosporium for degradation of the cyclodiene pesticide endosulfan.
    Kullman SW; Matsumura F
    Appl Environ Microbiol; 1996 Feb; 62(2):593-600. PubMed ID: 8593059
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biodegradation of endocrine-disrupting bisphenol A by white rot fungus Irpex lacteus.
    Shin EH; Choi HT; Song HG
    J Microbiol Biotechnol; 2007 Jul; 17(7):1147-51. PubMed ID: 18051326
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Expression analysis of extracellular proteins from Phanerochaete chrysosporium grown on different liquid and solid substrates.
    Sato S; Liu F; Koc H; Tien M
    Microbiology (Reading); 2007 Sep; 153(Pt 9):3023-3033. PubMed ID: 17768245
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional diversity of cytochrome P450s of the white-rot fungus Phanerochaete chrysosporium.
    Matsuzaki F; Wariishi H
    Biochem Biophys Res Commun; 2004 Nov; 324(1):387-93. PubMed ID: 15465031
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cytochrome b₅ reductase-cytochrome b₅ as an active P450 redox enzyme system in Phanerochaete chrysosporium: atypical properties and in vivo evidence of electron transfer capability to CYP63A2.
    Syed K; Kattamuri C; Thompson TB; Yadav JS
    Arch Biochem Biophys; 2011 May; 509(1):26-32. PubMed ID: 21376009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heterologous expression of fungal cytochromes P450 (CYP5136A1 and CYP5136A3) from the white-rot basidiomycete Phanerochaete chrysosporium: Functionalization with cytochrome b5 in Escherichia coli.
    Hatakeyama M; Kitaoka T; Ichinose H
    Enzyme Microb Technol; 2016 Jul; 89():7-14. PubMed ID: 27233123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical characterization of hydroquinone hydroxylase from Phanerochaete chrysosporium.
    Suzuki H; Mori R; Kato M; Shimizu M
    J Biosci Bioeng; 2023 Jan; 135(1):17-24. PubMed ID: 36344390
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biodegradation of gaseous chlorobenzene by white-rot fungus Phanerochaete chrysosporium.
    Wang C; Xi JY; Hu HY; Wen XH
    Biomed Environ Sci; 2008 Dec; 21(6):474-8. PubMed ID: 19263802
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro and in vivo inhibitory effects of some fungicides on catalase produced and purified from white-rot fungus Phanerochaete chrysosporium.
    Kavakçıoğlu B; Tarhan L
    Artif Cells Nanomed Biotechnol; 2014 Oct; 42(5):356-64. PubMed ID: 24079700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular characterization of cytochrome P450 catalyzing hydroxylation of benzoates from the white-rot fungus Phanerochaete chrysosporium.
    Matsuzaki F; Wariishi H
    Biochem Biophys Res Commun; 2005 Sep; 334(4):1184-90. PubMed ID: 16039998
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.